Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.142
Filter
1.
Article in English | MEDLINE | ID: mdl-38833395

ABSTRACT

Hashing has received significant interest in large-scale data retrieval due to its outstanding computational efficiency. Of late, numerous deep hashing approaches have emerged, which have obtained impressive performance. However, these approaches can contain ethical risks during image retrieval. To address this, we are the first to study the problem of group fairness within learning to hash and introduce a novel method termed Fairness-aware Hashing with Mixture of Experts (FATE). Specifically, FATE leverages the mixture-of-experts framework as the hashing network, where each expert contributes knowledge from an individual viewpoint, followed by aggregation using the gating mechanism. This strongly enhances the model capability, facilitating the generation of both discriminative and unbiased binary descriptors. We also incorporate fairness-aware contrastive learning, combining sensitive labels with feature similarities to ensure unbiased hash code learning. Furthermore, an adversarial learning objective condition on both deep features and hash codes is employed to further eliminate group biases. Extensive experiments on several benchmark datasets validate the superiority of the proposed FATE compared with various state-of-the-art approaches.

2.
Bioact Mater ; 39: 375-391, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38846528

ABSTRACT

The reconstruction of neural function and recovery of chronic damage following traumatic brain injury (TBI) remain significant clinical challenges. Exosomes derived from neural stem cells (NSCs) offer various benefits in TBI treatment. Numerous studies confirmed that appropriate preconditioning methods enhanced the targeted efficacy of exosome therapy. Interferon-gamma (IFN-γ) possesses immunomodulatory capabilities and is widely involved in neurological disorders. In this study, IFN-γ was employed for preconditioning NSCs to enhance the efficacy of exosome (IFN-Exo, IE) for TBI. miRNA sequencing revealed the potential of IFN-Exo in promoting neural differentiation and modulating inflammatory responses. Through low-temperature 3D printing, IFN-Exo was combined with collagen/chitosan (3D-CC-IE) to preserve the biological activity of the exosome. The delivery of exosomes via biomaterial scaffolds benefited the retention and therapeutic potential of exosomes, ensuring that they could exert long-term effects at the injury site. The 3D-CC-IE scaffold exhibited excellent biocompatibility and mechanical properties. Subsequently, 3D-CC-IE scaffold significantly improved impaired motor and cognitive functions after TBI in rat. Histological results showed that 3D-CC-IE scaffold markedly facilitated the reconstruction of damaged neural tissue and promoted endogenous neurogenesis. Further mechanistic validation suggested that IFN-Exo alleviated neuroinflammation by modulating the MAPK/mTOR signaling pathway. In summary, the results of this study indicated that 3D-CC-IE scaffold engaged in long-term pathophysiological processes, fostering neural function recovery after TBI, offering a promising regenerative therapy avenue.

3.
Small Methods ; : e2301760, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725320

ABSTRACT

The investigation of the interplay between complex coacervate microdroplets and amphiphilic molecules offers valuable insights into the processes of prebiotic compartmentalization on the early Earth and presents a promising avenue for future advancements in biotechnology. Herein, the interaction between complex coacervate microdroplets and amphiphilic molecule (decanoic acid) is systematically investigated by varying charge strengths of negatively charged polyelectrolytes (DNA and PAA) and positively charged polyelectrolytes (PDDA and DEAE-Dextran). It is found that the interaction between amphiphilic molecule and complex coacervate microdroplets depended on the delicate balance between the interaction between decanoic acid and polyelectrolyte and the interaction between two polyelectrolytes. The different spatial distribution of amphiphilic molecule can result in differences in the internal microenvironment, which can further alter the uptake or exclusion of small molecules and biomolecules with different charges and polarities and functional biological process.

4.
J Control Release ; 370: 543-555, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729434

ABSTRACT

Hyaluronic acid (HA)-based biopolymer hydrogels are promising therapeutic dressings for various wounds but still underperform in treating diabetic wounds. These wounds are extremely difficult to heal and undergo a prolonged and severe inflammatory process due to bacterial infection, overexpression of reactive oxygen species (ROS), and insufficient synthesis of NO. In this study, a dynamic crosslinked hyaluronic acid (HA) hydrogel dressing (Gel-HAB) loaded with allomelanin (AMNP)-N, N'-dis-sec-butyl-N, N'-dinitroso-1, 4-phenylenediamine (BNN6) nanoparticles (AMNP-BNN6) was developed for healing diabetic wounds. The dynamic acylhydrazone bond formed between hydrazide-modified HA (HA-ADH) and oxidized HA (OHA) makes the hydrogel injectable, self-healing, and biocompatible. The hydrogel, loaded with AMNP-BNN6 nanoparticles, exhibits promising ROS scavenging ability and on-demand release of nitric oxide (NO) under near-infrared (NIR) laser irradiation to achieve mild photothermal antibacterial therapy (PTAT) (∼ 48 °C). Notably, the Gel-HAB hydrogel effectively reduced the oxidative stress level, controlled infections, accelerated vascular regeneration, and promoted angiogenesis, thereby achieving rapid healing of diabetic wounds. The injectable self-healing nanocomposite hydrogel could serve as a mild photothermal-enhanced antibacterial, antioxidant, and nitric oxide release platform for the treatment of diabetic wounds.

5.
Magn Reson Med ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733066

ABSTRACT

PURPOSE: To present and assess an outlier mitigation method that makes free-running volumetric cardiovascular MRI (CMR) more robust to motion. METHODS: The proposed method, called compressive recovery with outlier rejection (CORe), models outliers in the measured data as an additive auxiliary variable. We enforce MR physics-guided group sparsity on the auxiliary variable, and jointly estimate it along with the image using an iterative algorithm. For evaluation, CORe is first compared to traditional compressed sensing (CS), robust regression (RR), and an existing outlier rejection method using two simulation studies. Then, CORe is compared to CS using seven three-dimensional (3D) cine, 12 rest four-dimensional (4D) flow, and eight stress 4D flow imaging datasets. RESULTS: Our simulation studies show that CORe outperforms CS, RR, and the existing outlier rejection method in terms of normalized mean square error and structural similarity index across 55 different realizations. The expert reader evaluation of 3D cine images demonstrates that CORe is more effective in suppressing artifacts while maintaining or improving image sharpness. Finally, 4D flow images show that CORe yields more reliable and consistent flow measurements, especially in the presence of involuntary subject motion or exercise stress. CONCLUSION: An outlier rejection method is presented and tested using simulated and measured data. This method can help suppress motion artifacts in a wide range of free-running CMR applications.

7.
Trends Mol Med ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38719712

ABSTRACT

While the dopaminergic system is important for cognitive processes, it is also sensitive to the influence of physical activity (PA). We summarize current evidence on whether PA-related changes in the human dopaminergic system are associated with alterations in cognitive performance, discuss recent advances, and highlight challenges and opportunities for future research.

8.
Dalton Trans ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787658

ABSTRACT

A new Co4-added polyoxometalate (CoAP) Cs4[(Co(H2O)5)2{(µ2-Co(H2O)4)2Co4(H2O)2(B-α-GeW9O34)2}]·6H2O (1) has been made using a lacunary directing strategy under hydrothermal conditions. Single-crystal X-ray diffraction analysis demonstrated that 1 is a one-dimensional (1D) chain, in which CoAP is linked by cobalt-oxygen octahedra to form a 1D structure with excellent chemical stability. The visible light-driven H2 evolution test demonstrated that 1 has high activity, with an H2 evolution rate of 1485.95 µmol h-1 g-1. PXRD and FT-IR tests demonstrated that compound 1 exhibits excellent heterogeneous catalytic stability.

9.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731584

ABSTRACT

Developing high-performance and cost-competitive electrocatalysts have great significance for the massive commercial production of water-splitting hydrogen. Ni-based electrocatalysts display tremendous potential for electrocatalytic water splitting. Herein, we synthesize a novel NiFe-layered double hydroxide (LDH) electrocatalyst in nanosheets array on high-purity Ni foam. By adjusting the Ni/Fe ratio, the microstructure, and even the behavior of the electrocatalyst in the oxygen evolution reaction (OER), changes significantly. The as-obtained material shows a small overpotential of 223 mV at 10 mAcm-2 as well as a low Tafel slope of 48.9 mV·dec-1 in the 1 M KOH electrolyte. In addition, it can deliver good stability for at least 24 h of continuous working at 10 mAcm-2. This work proposes a strategy for engineering catalysts and provides a method for the development of other Ni-based catalysts with excellent performance.

10.
Brain ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739753

ABSTRACT

Human brain organoids represent a remarkable platform for modeling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses reveal that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays reveal that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.

11.
Chem Asian J ; : e202400436, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753576

ABSTRACT

Prolonging the lifetime of SAPO-34 catalysts and enhancing their olefin selectivity in methanol-to-olefin (MTO) reactions are critical yet challenging objectives. Here, a series of hierarchical SAPO-34 catalysts were synthesized using a straightforward recrystallization method. The incorporation of triethylamine into the recrystallization mother liquor facilitated the formation of mesopores, achieving a high solid yield of up to 90%. Notably, the addition of phosphoric acid and ammonium polyvinyl phosphate alcohol during the recrystallization process significantly enhanced the crystallinity and regularity of the hierarchical SAPO-34 crystals, consequently increasing the mesopore size. Due to the substantially improved mass transfer efficiency and moderated acidity, the SP34-0.14P-0.06R catalysts exhibited a prolonged operational life of 344 min and 80.3% selectivity of ethylene and propylene at a WHSV of 2h-1. This performance markedly surpasses that of the parent SP34 catalyst, which demonstrated a lifetime of 136 min and a selectivity of 78.0%. Remarkably, the SP34-0.14P-0.06R maintained a lifetime of 166 minutes even at a high WHSV of 10h-1, which is more than 5-fold greater than that of the original microporous SP34. This research offers valuable insights into the design and development of hierarchically porous zeolites with high yields, enhancing the efficiency of MTO reactions and other applications.

12.
Angew Chem Int Ed Engl ; : e202405807, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757228

ABSTRACT

Artificial photosynthesis of fuels has garnered significant attention, with SrTiO3 emerging as a potential candidate for photocatalysis due to its exceptional physicochemical properties. However, selectively converting CO2 into fuels with desired reaction products remains a grand challenge. Herein, we design an updated method via an aging strategy based on the electrospinning technique to synthesize a single-crystalline Al-doped SrTiO3 nanotubular networks with self-assembled orderly mesopores, further modified by Cu-Pd alloy. It exhibits both high crystallinity and superior cross-linked mesoporous structures, effectively facilitating charge carrier transfer, photon utilization, and mass transfer, with a remarkable enhancement from 0.025 mmol·h-1·m-2 to 1.090 mmol·h-1·m-2 in the CO production rate. Meanwhile, the ordered arrangement of Cu and Pd atoms on the (111) surface can promote the rate-determining step (*CO2 to *COOH), which is also responsible for its good activity. The presence of CuO in the reaction confers a significant advantage for CO desorption, leading to a remarkable CO selectivity of 95.54%. This work highlights new insights into developing advanced heterogeneous photocatalysts.

13.
Adv Healthc Mater ; : e2401305, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767216

ABSTRACT

Combining the detection of tumor protein markers with the capture of circulating tumor cells (CTCs) represents an ultra-promising approach for early tumor detection. However, current methodologies have not yet achieved the necessary low detection limits and efficient capture. Here, we introduced a novel polypyrrole nanotentacles sensing platform featuring anemone-like structures capable of simultaneously detecting protein biomarkers and capturing CTCs. The incorporation of nanotentacles significantly enhanced the electrode surface area, providing abundant active sites for antibody binding. This enhancement allowed detecting nucleus matrix protein22 (NMP22) and bladder tumor antigen (BTA) with 2.39 and 3.12 pg/mL detection limit, respectively. Furthermore, our developed sensing platform effectively captured MCF-7 cells in blood samples with a detection limit of fewer than 10 cells/mL, attributed to the synergistic multivalent binding facilitated by the specific recognition antibodies and the positive charge on the nanotentacles surface. This sensing platform demonstrated excellent detection capabilities and outstanding capture efficiency, offering a simple, accurate, and efficient strategy for early tumor detection. This article is protected by copyright. All rights reserved.

14.
PLoS Comput Biol ; 20(5): e1012080, 2024 May.
Article in English | MEDLINE | ID: mdl-38739672

ABSTRACT

Changes in risk preference have been reported when making a series of independent risky choices or non-foraging economic decisions. Behavioral economics has put forward various explanations for specific changes in risk preference in non-foraging tasks, but a consensus regarding the general principle underlying these effects has not been reached. In contrast, recent studies have investigated human economic risky choices using tasks adapted from foraging theory, which require consideration of past choices and future opportunities to make optimal decisions. In these foraging tasks, human economic risky choices are explained by the ethological principle of fitness maximization, which naturally leads to dynamic risk preference. Here, we conducted two online experiments to investigate whether the principle of fitness maximization can explain risk preference dynamics in a non-foraging task. Participants were asked to make a series of independent risky economic decisions while the environmental richness changed. We found that participants' risk preferences were influenced by the current and past environments, making them more risk-averse during and after the rich environment compared to the poor environment. These changes in risk preference align with fitness maximization. Our findings suggest that the ethological principle of fitness maximization might serve as a generalizable principle for explaining dynamic preferences, including risk preference, in human economic decision-making.


Subject(s)
Choice Behavior , Decision Making , Risk-Taking , Humans , Male , Female , Adult , Decision Making/physiology , Choice Behavior/physiology , Young Adult , Computational Biology , Environment , Economics, Behavioral
15.
Cells ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786014

ABSTRACT

Translational research in neurological and psychiatric diseases is a rapidly advancing field that promises to redefine our approach to these complex conditions [...].


Subject(s)
Neurology , Psychiatry , Translational Research, Biomedical , Humans , Translational Research, Biomedical/trends , Psychiatry/methods , Mental Disorders/therapy , Nervous System Diseases/therapy
16.
CNS Neurosci Ther ; 30(5): e14729, 2024 05.
Article in English | MEDLINE | ID: mdl-38738958

ABSTRACT

BACKGROUND: Pituitary adenoma is one of the most common brain tumors. Most pituitary adenomas are benign and can be cured by surgery and/or medication. However, some pituitary adenomas show aggressive growth with a fast growth rate and are resistant to conventional treatments such as surgery, drug therapy, and radiation therapy. These tumors, referred to as refractory pituitary adenomas, often relapse or regrow in the early postoperative period. The tumor microenvironment (TME) has recently been identified as an important factor affecting the biological manifestations of tumors and acts as the main battlefield between the tumor and the host immune system. MAIN BODY: In this review, we focus on describing TME in pituitary adenomas and refractory pituitary adenomas. Research on the immune microenvironment of pituitary adenomas is currently focused on immune cells such as macrophages and lymphocytes, and extensive research and experimental verifications are still required regarding other components of the TME. In particular, studies are needed to determine the role of the TME in the specific biological behaviors of refractory pituitary adenomas, such as high invasion, fast recurrence rate, and high tolerance to traditional treatments and to identify the mechanisms involved. CONCLUSION: Overall, we summarize the similarities and differences between the TME of pituitary adenomas and refractory pituitary adenomas as well as the changes in the biological behavior of pituitary adenomas that may be caused by the microenvironment. These changes greatly affect the outcome of patients.


Subject(s)
Adenoma , Pituitary Neoplasms , Tumor Microenvironment , Pituitary Neoplasms/therapy , Pituitary Neoplasms/pathology , Humans , Tumor Microenvironment/physiology , Tumor Microenvironment/immunology , Adenoma/therapy , Adenoma/pathology , Animals , Treatment Outcome
17.
Theranostics ; 14(7): 2757-2776, 2024.
Article in English | MEDLINE | ID: mdl-38773982

ABSTRACT

Background: Cancer cells are capable of evading clearance by macrophages through overexpression of anti-phagocytic surface proteins known as "don't eat me" signals. Monoclonal antibodies that antagonize the "don't-eat-me" signaling in macrophages and tumor cells by targeting phagocytic checkpoints have shown therapeutic promises in several cancer types. However, studies on the responses to these drugs have revealed the existence of other unknown "don't eat me" signals. Moreover, identification of key molecules and interactions regulating macrophage phagocytosis is required for tumor therapy. Methods: CRISPR screen was used to identify genes that impede macrophage phagocytosis. To explore the function of Vtn and C1qbp in phagocytosis, knockdown and subsequent functional experiments were conducted. Flow cytometry were performed to explore the phagocytosis rate, polarization of macrophage, and immune microenvironment of mouse tumor. To explore the underlying molecular mechanisms, RNA sequencing, immunoprecipitation, mass spectrometry, and immunofluorescence were conducted. Then, in vivo experiments in mouse models were conducted to explore the probability of Vtn knockdown combined with anti-CD47 therapy in breast cancer. Single-cell sequencing data from the Gene Expression Omnibus from The Cancer Genome Atlas database were analyzed. Results: We performed a genome-wide CRISPR screen to identify genes that impede macrophage phagocytosis, followed by analysis of cell-to-cell interaction databases. We identified a ligand-receptor pair of Vitronectin (Vtn) and complement C1Q binding protein (C1qbp) in tumor cells or macrophages, respectively. We demonstrated tumor cell-secreted Vtn interacts with C1qbp localized on the cell surface of tumor-associated macrophages, inhibiting phagocytosis of tumor cells and shifting macrophages towards the M2-like subtype in the tumor microenvironment. Mechanistically, the Vtn-C1qbp axis facilitated FcγRIIIA/CD16-induced Shp1 recruitment, which reduced the phosphorylation of Syk. Furthermore, the combination of Vtn knockdown and anti-CD47 antibody effectively enhanced phagocytosis and infiltration of macrophages, resulting in a reduction of tumor growth in vivo. Conclusions: This work has revealed that the Vtn-C1qbp axis is a new anti-phagocytic signal in tumors, and targeting Vtn and its interaction with C1qbp may sensitize cancer to immunotherapy, providing a new molecular target for the treatment of triple-negative breast cancer.


Subject(s)
CD47 Antigen , Macrophages , Phagocytosis , Animals , Mice , Humans , Macrophages/metabolism , Macrophages/immunology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Female , Cell Line, Tumor , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Cell Communication , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Signal Transduction/drug effects , Mice, Inbred BALB C , Carrier Proteins , Mitochondrial Proteins
18.
Food Chem X ; 22: 101492, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38817982

ABSTRACT

Introducing Holstein cows on Qinghai-Tibetan Plateau is a potential solution to enhance local milk production. However, the relationship between milk quality and altitude in China remains unknown. Therefore, the components and plasmin (PL) system of raw milk from different altitudes (sea level, 1600, 2700, and 3800 m) were investigated. The daily milk production of Holstein cows and PL activity decreased as the altitude increased. However, the components content of raw milk, plasminogen (PLG)/PL ratio, activities of PLG and plasmin activator (PA) increased with altitude. The pasteurization resulted a significant decrease in PA activity of all milk and a significant increase in PL activity in milk collected at higher altitudes (2700 and 3800 m), suggesting the pasteurization was unsuitable for preserving milk at higher altitudes. This study offered references for the production and storage of milk after introducing Holstein cows on Qinghai-Tibetan Plateau.

19.
Phys Chem Chem Phys ; 26(22): 15987-15998, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38775056

ABSTRACT

The environmental suitability of hydrogen storage materials is significantly influenced by the way aluminum reacts synchronously with water, ice, and water steam. The straightforward ball milling process was used to synthesize Al-based composite materials with carbon nanotubes (CNTs) or graphene oxide (GO). The reactivity of the composites in various types of water was investigated. The Al/Bi/CNT and Al/Bi/GO composites may react in liquid water, low-temperature ice, and high-temperature steam. The hydrolysis promotion of Al-based composites by CNTs is superior to that of GO, whether in liquid water at 20 °C or ice at -20 °C. The maximum hydrogen generation rate of Al/Bi/CNT composites can reach 34.6 mL g-1 s-1 at 20 °C. The hydrogen generation volume of Al/Bi/CNT can reach 700 mL g-1 in 15 min on ice at -20 °C. Moreover, the ignition temperature and ignition delay time of Al/Bi/CNT are shorter than those of Al/Bi/GO in high-temperature steam. The hydrogen generation volume from Al/Bi/CNT at 200 °C can reach 853 mL g-1. These may originate from the unique one-dimensional nanostructure of CNTs, which provides more surface area or reaction sites during the hydrolysis of the composite.

20.
Forensic Sci Res ; 9(2): owae027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774862

ABSTRACT

In paternity testing, when there are Mendelian errors in the alleles between the child and the parents, a slippage mutation, or silent allele may not fully explain the phenomenon. Sometimes, it is attributed to chromosomal abnormalities, such as uniparental disomy (UPD). Here, we present the investigation of two cases of suspected UPD in paternity testing based on short tandem repeat (STR) detection (capillary electrophoresis platform). Case 1 involves a trio, where all genotypes detected on chromosome 6 in the child are homozygous and found in the father. Case 2 is a duo (mother and child), where all genotypes on chromosome 3 in the child are homozygous and not always found in the mother. At the same time, Mendelian error alleles were also observed at specific loci in these two chromosomes. Furthermore, we used the MGIEasy Signature Identification Library Prep Kit for sequencing on the massively parallel sequencing platform, which included common autosomal, X and Y chromosomes, and mitochondrial genetic markers used in forensic practice. The results showed that the genotypes of shared STRs on the two platforms were consistent, and STRs and single nucleotide polymorphisms (SNPs) on these two chromosomes were homozygous. All other genetic markers followed the laws of inheritance. A comprehensive analysis supported the parent-child relationship between the child and the alleged parent, and the observed genetic anomalies can be attributed to UPD. UPD occurrences are rare, and ignoring its presence can lead to erroneous exclusions in paternity testing, particularly when multiple loci on a chromosome exhibit homozygosity.

SELECTION OF CITATIONS
SEARCH DETAIL
...