Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 222: 118907, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35944408

ABSTRACT

The precipitation of carbonate minerals does not invariably result in CO2 emission to the atmosphere, because dissolved inorganic carbon (DIC) can be partially utilized by terrestrial aquatic phototrophs, thus generating an autochthonous organic carbon (AOC) sink. However, little is known about the potential effects of this mechanism on carbon cycles in DIC-rich lakes, mainly due to the lack of detailed documentation of the related processes, which limits our ability to accurately evaluate and predict the magnitude of this carbon sink. We conducted field observations in Fuxian Lake, a large and representative karst lake in the Yunnan-Guizhou Plateau, SW China. Continuous diel monitoring was conducted to quantitatively assess the coupled relationship between lake metabolism and DIC cycling and its influence on the carbonate weathering-related CO2 sink. We found that the diel physicochemical variations and isotopic characteristics were mainly controlled by the metabolism of aquatic phototrophs, evidenced by a significant relationship between net ecosystem production and diel DIC cycling, and demonstrating the significance of DIC fertilization in supporting high primary production in karst lakes. The data showed that a reduction in photosynthesis occurred in the afternoon of almost every day, which can be explained by the lower CO2/O2 ratio that increased the potential for the photorespiration of aquatic plants, thus reducing photosynthesis. We found that a net autotrophic ecosystem prevailed in Fuxian Lake, suggesting that the lake functions more as a sink than a source of atmospheric CO2. Considering carbonate weathering, the estimated AOC sink amounted to 650-704 t C km-2 yr-1, demonstrating both the potentially significant role of metabolism in lacustrine carbon cycling and the potential of the combination of photosynthesis and carbonate weathering for carbon sequestration. Our findings may help to quantitatively estimate the future impact of lake metabolism on carbon cycling, with implications for formulating management policies needed to regulate the magnitude of this carbon sink.


Subject(s)
Carbon Dioxide , Lakes , Carbon/analysis , Carbonates/analysis , China , Ecosystem
2.
Environ Pollut ; 288: 117727, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34329067

ABSTRACT

Rice plants accumulate Hg from the soil and ambient air, however, evaluating the contribution of Hg from these two sources remains challenging. Here, we proposed a practical method to predict the contribution of total gaseous mercury (TGM) to Hg in white rice in Wanshan Hg mine area (WMM). In this study, rice was planted in the same low-Hg soil at different sites of WMM with varying TGM levels. Comparing to the control sites at IG (Institute of Geochemistry, Guiyang), TGM is the dominant source of Hg in rice leaves and white rice at TB (Tianba) and ZJW (Zhangjiawan) sites of WMM. Subsequently, a good correlation between the Hg concentrations in rice leaves and the concentration contributions of TGM to Hg in white rice was obtained. Such a correlation enabled feasible quantification of the contribution of TGM to Hg in white rice collected from the Wanshan Hg mine. The contribution of TGM to Hg in white rice across the WMM area was also estimated, demonstrating that white rice receives 14-83% of Hg from the air. Considering the high contribution of TGM to Hg in white rice, we compared the relative health risks of Hg via inhalation and rice consumption and found that inhalation, rather than rice consumption, was the major pathway for bioaccessible Hg exposure in adults at high-TGM sites. This study provides new knowledge of Hg biogeochemistry in Hg-mining areas.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Soil Pollutants , China , Environmental Monitoring , Gases , Mercury/analysis , Plant Leaves/chemistry , Soil Pollutants/analysis
3.
Sci Total Environ ; 720: 137539, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32143044

ABSTRACT

Recent studies show that the carbon sink attributable to the weathering of carbonate rocks may have been greatly underestimated if the biological carbon pump (BCP) effect in transferring dissolved inorganic carbon (DIC) to organic carbon (autochthonous OC) by aquatic photoautotrophs is neglected. The uptake of DIC by aquatic photoautotrophs may reach 0.2 to 0.7 Pg C/a globally, indicating that the carbon sink by the coupled carbonate weathering with aquatic photosynthesis mechanism (CCW) may be an important control in climate change. In order to understand the sensitivity of the CCW carbon sink to changes of climate and land-use, a systematic study of modern trap and 100-year-long core sediments was conducted in Fuxian Lake, (Yunnan, SW China), the second-deepest plateau oligotrophic freshwater lake in China. It was found that (1) the autochthonous OC in the lake sediments was characterized by lower C/N ratios and higher δ13Corg. By means of an n-alkanes compound calculation, the proportions of autochthonous OC were determined to be in the range, 60-68% of all OC; (2) increase in the autochthonous OC accumulation rate (OCARauto) was accompanied by an increase in the inorganic carbon accumulation rate (ICAR) in both the trap and core sediments. In particular, the post-1950 OCARauto was estimated to be about 6.9 times that for the period, 1910-1950; (3) OCARauto in core sediments increased significantly with global warming and land-use change, from 1.06 g C m-2 yr-1 in 1910 to 21.74 g C m-2 yr-1 in 2017. The increasing carbon sink may act as a negative feedback on global warming if the trend holds for all lakes globally. This study is the first to quantify the burial flux of organic carbon generated by the BCP effect in lakes and may contribute to solving the problem of the missing carbon sink in the global carbon cycle.

4.
Environ Sci Technol ; 54(6): 3228-3236, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32101685

ABSTRACT

Mercury (Hg) bioaccumulation in rice poses a health issue for rice consumers. In rice paddies, selenium (Se) can decrease the bioavailability of Hg through forming the less bioavailable Hg selenides (HgSe) in soil. Rice leaves can directly uptake a substantial amount of elemental Hg from the atmosphere, however, whether the bioaccumulation of Hg in rice leaves can affect the bioaccumulation of Se in rice plants is not known. Here, we conducted field and controlled studies to investigate the bioaccumulation of Hg and Se in the rice-soil system. In the field study, we observed a significantly positive correlation between Hg concentrations and BAFs of Se in rice leaves (r2 = 0.60, p < 0.01) collected from the Wanshan Mercury Mine, SW China, suggesting that the bioaccumulation of atmospheric Hg in rice leaves can facilitate the uptake of soil Se, perhaps through the formation of Hg-Se complex in rice leaves. This conclusion was supported by the controlled study, which observed significantly higher concentrations and BAFs of Se in rice leaf at a high atmospheric Hg site at WMM, compared to a low atmospheric Hg site in Guiyang, SW China.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Selenium , Soil Pollutants , Bioaccumulation , China , Environmental Monitoring , Plant Leaves , Soil
5.
Sci Total Environ ; 669: 83-90, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30878943

ABSTRACT

Rice is an important source of selenium (Se) exposure; however, the transformation and translocation of Se in the soil-rice system remain poorly understood. Here, we investigated the speciation of Se in Se-rich soils from Enshi, Central China and assessed which Se species is bioavailable for rice grown in Enshi. Extremely high Se concentrations (0.85 to 11.46 mg/kg) were observed in the soils. The soil Se fractions, which include water-soluble Se (0.2 to 3.4%), ligand-exchangeable Se (4.5 to 15.0%), organically bound Se (57.8 to 80.0%) and residual Se (6.1 to 32.9%), are largely controlled by soil organic matter (SOM) levels. Decomposition of SOM promotes the transformation of organically bound Se to water-soluble Se and ligand-exchangeable Se, thereby increasing the bioavailability of Se. The bioaccumulation factors (BAFs) of Se decrease in the following order: roots (0.84 ±â€¯0.30) > bran (0.33 ±â€¯0.17) > leaves (0.18 ±â€¯0.09) > polished rice (0.14 ±â€¯0.07) > stems (0.12 ±â€¯0.07) > husks (0.11 ±â€¯0.07). Selenium levels in rice plants are affected by multiple soil Se fractions in the soil. Water-soluble, ligand-exchangeable and organically bound Se fractions are the major sources of Se in rice tissues.


Subject(s)
Oryza/metabolism , Selenium/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Biological Availability , China
SELECTION OF CITATIONS
SEARCH DETAIL
...