Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(17): 6421-6431, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699264

ABSTRACT

Photodynamic immunotherapy (PDI) is an innovative approach to cancer treatment that utilizes photodynamic therapy (PDT) and photosensitizers (PSs) to induce immunogenic cell death (ICD). However, currently most commonly used PSs have restricted capabilities to generate reactive oxygen species (ROS) via a type-II mechanism under hypoxic environments, which limits their effectiveness in PDI. To overcome this, we propose a novel approach for constructing oxygen independent PSs based on stable organic free-radical molecules. By fine-tuning the characteristics of tris(2,4,6-trichlorophenyl)-methyl (TTM) radicals through the incorporation of electron-donating moieties, we successfully found that TTMIndoOMe could produce substantial amounts of ROS even in hypoxic environments. In vitro experiments showed that TTMIndoOMe could effectively produce O2˙-, kill tumor cells and trigger ICD. Moreover, in vivo experiments also demonstrated that TTMIndoOMe could further trigger anti-tumor immune response and exhibit a superior therapeutic effect compared with PDT alone. Our study offers a promising approach towards the development of next-generation PSs functioning efficiently even under hypoxic conditions and also paves the way for the creation of more effective PSs for PDI.

2.
Chem Commun (Camb) ; 60(44): 5719-5722, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742271

ABSTRACT

A new macrocyclic arene, dibenzofuran[3]arene, was synthesized, which could be conveniently transformed to an O-doped aromatic belt with a rigid ring-shaped structure and deep cavity. Moreover, the O-doped aromatic belt also showed a high HOMO energy and a narrow HOMO-LUMO gap experimentally and theoretically.

3.
Chem Commun (Camb) ; 60(37): 4962-4965, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38629394

ABSTRACT

A calix[3]carbazole-based cavitand was conveniently synthesized. It was found that the cavitand with adjustable conformation could show excellent complexation with fullerenes C60 and C70 in both solution and the solid state. Moreover, the crystal structures of the host-guest complexes show that the cavitand can stack into channel-like architectures, in which fullerenes are orderly arranged inside.

4.
Angew Chem Int Ed Engl ; : e202407095, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658318

ABSTRACT

Chirality-driven self-sorting plays an essential role in controlling the biofunction of biosystems, such as the chiral double-helix structure of DNA from self-recognition by hydrogen bonding. However, achieving precise control over the chiral self-sorted structures and their functional properties for the bioinspired supramolecular systems still remains a challenge, not to mention realizing dynamically reversible regulation. Herein, we report an unprecedented saucer[4]arene-based charge transfer (CT) cocrystal system with dynamically reversible chiral self-sorting synergistically induced by chiral triangular macrocycle and organic vapors. It displays efficient chain length-selective vapochromism toward alkyl ketones due to precise modulation of optical properties by vapor-induced diverse structural transformations. Experimental and theoretical studies reveal that the unique vapochromic behavior is mainly attributed to the formation of homo- or heterochiral self-sorted assemblies with different alkyl ketone guests, which differ dramatically in solid-state superstructures and CT interactions, thus influencing their optical properties. This work highlights the essential role of chiral self-sorting in controlling the functional properties of synthetic supramolecular systems, and the rarely seen controllable chiral self-sorting at the solid-vapor interface deepens the understanding of efficient vapochromic sensors.

5.
Adv Sci (Weinh) ; : e2309031, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553794

ABSTRACT

Chiral conjugated polymer has promoted the development of the efficient circularly polarized electroluminescence (CPEL) device, nevertheless, it remains a challenge to develop chiral polymers with high electroluminescence performance. Herein, by the acceptor copolymerization of axially chiral biphenyl emitting skeleton and benzophenone, a pair of axially chiral conjugated polymers namely R-PAC and S-PAC are synthesized. The target polymers exhibit obvious thermally activated delayed fluorescence (TADF) activities with high photoluminescence quantum yields of 81%. Moreover, the chiral polymers display significant circularly polarized luminescence features, with luminescence dissymmetry factor (|glum|) of nearly 3 × 10-3. By using the chiral polymers as emitters, the corresponding circularly polarized organic light-emitting diodes (CP-OLEDs) exhibit efficient CPEL signals with electroluminescence dissymmetry factor |gEL| of 3.4 × 10-3 and high maximum external quantum efficiency (EQEmax) of 17.8%. Notably, considering both EQEmax and |gEL| comprehensively, the device performance of R-PAC and S-PAC is the best among all the reported CP-OLEDs with chiral conjugated polymers as emitters. This work provides a facile approach to constructing chiral conjugated TADF polymers and discloses the potential of axially chiral conjugated luminescent skeletons in architecting high-performance CP-OLEDs.

6.
Angew Chem Int Ed Engl ; 63(18): e202401835, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38380835

ABSTRACT

The intrinsic helical π-conjugated skeleton makes helicenes highly promising for circularly polarized electroluminescence (CPEL). Generally, carbon helicenes undergo low external quantum efficiency (EQE), while the incorporation of a multi-resonance thermally activated delayed fluorescence (MR-TADF) BN structure has led to an improvement. However, the reported B,N-embedded helicenes all show low electroluminescence dissymmetry factors (gEL), typically around 1×10-3. Therefore, the development of B,N-embedded helicenes with both a high EQE and gEL value is crucial for achieving highly efficient CPEL. Herein, a facile approach to synthesize B,N-embedded hetero[9]helicenes, BN[9]H, is presented. BN[9]H shows a bright photoluminescence with a maximum at 578 nm with a high luminescence dissymmetry factor (|glum|) up to 5.8×10-3, attributed to its inherited MR-TADF property and intrinsic helical skeleton. Furthermore, circularly polarized OLED devices incorporating BN[9]H as an emitter show a maximum EQE of 35.5 %, a small full width at half-maximum of 48 nm, and, more importantly, a high |gEL| value of 6.2×10-3. The Q-factor (|EQE×gEL|) of CP-OLEDs is determined to be 2.2×10-3, which is the highest among helicene analogues. This work provides a new approach for the synthesis of higher helicenes and paves a new way for the construction of highly efficient CPEL materials.

7.
Nat Commun ; 15(1): 1425, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365888

ABSTRACT

Developing a facile and feasible strategy to fabricate thermally activated delayed fluorescence materials exhibiting full-color tunability remains an appealing yet challenging task. In this work, a general supramolecular strategy for fabricating thermally activated delayed fluorescence materials is proposed. Consequently, a series of host-guest cocrystals are prepared by electron-donating calix[3]acridan and various electron-withdrawing guests. Owing to the through-space charge transfer mediated by multiple noncovalent interactions, these cocrystals all display efficient thermally activated delayed fluorescence. Especially, by delicately modulating the electron-withdrawing ability of the guest molecules, the emission colors of these cocrystals can be continuously tuned from blue (440 nm) to red (610 nm). Meanwhile, high photoluminescence quantum yields of up to 87% is achieved. This research not only provides an alternative and general strategy for the fabrication of thermally activated delayed fluorescence materials, but also establishes a reliable supramolecular protocol toward the design of advanced luminescent materials.

8.
Chempluschem ; : e202400023, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288886

ABSTRACT

Over the past decades, supramolecular luminescent materials (SLMs) have attracted considerable attention due to their dynamic noncovalent interactions, versatile functions, and intriguing applications in many research fields. From construction to application, great efforts and progress have been made in color-tunable SLMs in recent years. In order to realize multicolor luminescence, various design strategies have been proposed. Macrocyclic chemistry, one of the brightest jewels in the field of supramolecular chemistry, has played a crucial role in the construction of stimuli-responsive and emission-tunable SLMs. Moreover, the flexible and tunable conformation and multiple noncovalent complexation sites of the macrocyclic arenes (MAs) afford a new opportunity to create such dynamic smart luminescent materials. Inspired by our reported work on the color-tunable supramolecular crystalline assemblies modulated by the conformation of naphth[4]arene, this Concept provides a summary of the latest developments in the construction of color-tunable MA-based SLMs, accompanied by the various construction strategies. The aim is to provide researchers with a new perspective to construct color-tunable SLMs with fascinating functions.

9.
Nat Commun ; 15(1): 670, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253630

ABSTRACT

The endeavor to enhance utility of organic molecular cages involves the evolution of them into higher-level chiral superstructures with self-similar, presenting a meaningful yet challenging. In this work, 2D tri-bladed propeller-shaped triphenylbenzene serves as building blocks to synthesize a racemic 3D tri-bladed propeller-shaped helical molecular cage. This cage, in turn, acts as a building block for a pair of higher-level 3D tri-bladed chiral helical molecular cages, featuring multilayer sandwich structures and displaying elegant characteristics with self-similarity in discrete superstructures at different levels. The evolutionary procession of higher-level cages reveals intramolecular self-shielding effects and exclusive chiral narcissistic self-sorting behaviors. Enantiomers higher-level cages can be interconverted by introducing an excess of corresponding chiral cyclohexanediamine. In the solid state, higher-level cages self-assemble into supramolecular architectures of L-helical or D-helical nanofibers, achieving the scale transformation of chiral characteristics from chiral atoms to microscopic and then to mesoscopic levels.

10.
Adv Mater ; 36(5): e2307420, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37697624

ABSTRACT

Chiral B/N embedded multi-resonance (MR) emitters open a new paradigm of circularly polarized (CP) organic light-emitting diodes (OLEDs) owing to their unique narrowband spectra. However, pure-red CP-MR emitters and devices remain exclusive in literature. Herein, by introducing a B-N covalent bond to lower the electron-withdrawing ability of the para-positioned B-π-B motif, the first pair of pure-red double hetero-[n]helicenes (n = 6 and 7) CP-MR emitter peaking 617 nm with a small full-width at half-maximum of 38 nm and a high photoluminescence quantum yield of ≈100% in toluene is developed. The intense mirror-image CP light produced by the enantiomers is characterized by high photoluminescence dissymmetry factors (gPL ) of +1.40/-1.41 × 10-3 from their stable helicenes configuration. The corresponding devices using these enantiomers afford impressive CP electroluminescence dissymmetry factors (gEL ) of +1.91/-1.77 × 10-3 , maximum external quantum efficiencies of 36.6%/34.4% and Commission Internationale de I'Éclairage coordinates of (0.67, 0.33), exactly satisfying the red-color requirement specified by National Television Standards Committee (NTSC) standard. Notably a remarkable long LT95 (operational time to 95% of the initial luminance) of ≈400 h at an initial brightness of 10,000 cd m-2 is also observed for the same device, representing the most stable CP-OLED up to date.

11.
Chem Commun (Camb) ; 59(88): 13089-13106, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37830234

ABSTRACT

Development of circularly polarized luminescence (CPL) materials utilizing supramolecular strategies has recently attracted increasing interest in supramolecular chemistry and materials science. Chiral macrocycles, especially chiral macrocyclic hosts, have stable structures, adjustable internal cavities to encapsulate different guests, and host-guest complexation to induce special photophysical properties. Consequently, various CPL materials based on chiral macrocycles have been developed during the last decade. To gain a better understanding of this rapidly developing research area, it is necessary and also important to summarize the advances in CPL materials based on chiral macrocycles. In this review, CPL materials from different chiral macrocycles, especially classical and newly reported chiral macrocyclic hosts and their derivatives, will be comprehensively summarized. It is believed that this review will be of guiding significance and also very helpful for the development of macrocyclic chemistry and CPL materials.

12.
ACS Omega ; 8(25): 23142-23147, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396207

ABSTRACT

Compounds MBZ-mPXZ, MBZ-2PXZ, MBZ-oPXZ, EBZ-PXZ, and TBZ-PXZ were conveniently synthesized, and they were found to exhibit TADF properties with lifetimes of 857, 575, 561, 768, and 600 ns, respectively. These short lifetimes of the compounds might be due to the combination of small singlet-triplet splitting energy (ΔEST) and benzoate group, which could be an efficient strategy for the further design of short-lifetime TADF materials.

13.
RSC Adv ; 13(31): 21296-21299, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37456544

ABSTRACT

Compounds PTZ-MBZ (methyl 3-(10H-phenothiazin-10-yl)benzoate) and DMAC-MBZ (methyl 3-(9,9-dimethylacridin-10(9H)-yl)benzoate) were conveniently synthesized, and they exhibited TADF properties with lifetimes of 0.80 and 2.17 µs, respectively. The spatially separated highest occupied molecular orbital and lowest unoccupied molecular orbital resulted in a very small singlet-triplet energy gap of 0.0152 eV and 0.0640 eV, respectively. Thermally activated delayed fluorescence materials with short lifetime could be used as promising luminescent materials for organic light-emitting diodes.

14.
Angew Chem Int Ed Engl ; 62(42): e202305214, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37269024

ABSTRACT

Although the chemistry of macrocyclic arenes has seen rapid development in recent years, the synthesis of new macrocyclic arenes from aromatic rings with no directing groups remains a challenge. In this work, a new macrocyclic arene, naphth[4]arene (NA[4]A), composed of four naphthalene rings bridged by methylene groups, was synthesized using macrocycle-to-macrocycle conversion. NA[4]A shows 1,3-alternate and 1,2-alternate conformations in the solid state, which can be selectively obtained. By supramolecular co-assembly of NA[4]A and 1,2,4,5-tetracyanobenzene (TCNB) in different concentrations and temperatures, two conformation-dependent crystalline luminescent co-assemblies 1,2-NTC and 1,3-NTC can be selectively prepared. Interestingly, the two charge-transfer crystalline assemblies containing NA[4]A with different conformations show bright yellow and green fluorescence, and also display high photoluminescence quantum yields (PLQYs) of 45 % and 43 %. Furthermore, they exhibit color-tunable two-photon excited upconversion emission.

15.
Chem Commun (Camb) ; 59(48): 7431-7434, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37249313

ABSTRACT

The complexation behaviors of pagoda[n]arenes (n = 4, 5) with ferrocene, ferrocenium and analogues cobaltocenium were studied. The inclusion complexes of pagoda[n]arenes can protect ferrocenium from oxidation in organic solvents and improve the stability and oxygen resistance of ferrocenium.

16.
Chem Soc Rev ; 52(9): 3265-3298, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37083011

ABSTRACT

Macrocyclic arenes including calixarenes, resorcinarenes, cyclotriveratrylene, pillararenes and so on have emerged as highly attractive synthetic macrocyclic hosts due to their unique structures, facile functionalization, and broad range of applications. In recent years, there has been growing interest in the development of novel macrocyclic arenes composed of various aromatic building blocks bridged by methylene groups, which have found applications in various research areas. Consequently, the development of novel macrocyclic arenes has become a frontier and hot topic in supramolecular and macrocyclic chemistry. In this review, we feature the recent advances in the synthesis and applications of novel macrocyclic arenes that have emerged in the last decade. The general synthetic strategies employed for these macrocyclic arenes are systematically summarized, and their wide applications in molecular recognition and assemblies, molecular machines, biomedical science and functional materials are highlighted.

17.
Org Lett ; 25(2): 364-368, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36625525

ABSTRACT

Herein, host-guest complexation between pagoda[n]arenes (n = 4, P4; n = 5, P5) and tropylium cation (G) was investigated in detail. It was found that both P4 and P5 showed surprisingly strong binding affinities toward the tropylium cation with association constants of more than 107 M-1 for the 1:1 host-guest complexes. The theoretical calculations showed different host-guest complexion ways for complexes G@P4 and G@P5 and the strong π···π interactions and multiple C-H···π interactions play a very important role in the formation of these stable complexes, respectively. Moreover, the switchable processes of guest binding and release in the complexes can be effectively controlled by redox stimuli, and they can be also visible by the color and fluorescence changes.

18.
Angew Chem Int Ed Engl ; 62(4): e202215367, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36428269

ABSTRACT

Chiral nanographenes with both high fluorescence quantum yields (ΦF ) and large dissymmetry factors (glum ) are essential to the development of circularly polarized luminescence (CPL) materials. However, most studies have been focused on the improvement of glum , whereas how to design highly emissive chiral nanographenes is still unclear. In this work, we propose a new design strategy to achieve chiral nanographenes with high ΦF by helical π-extension of strongly luminescent chromophores while maintaining the frontier molecular orbital (FMO) distribution pattern. Chiral nanographene with perylene as the core and two dibenzo[6]helicene fragments as the wings has been synthesized, which exhibits a record high ΦF of 93 % among the reported chiral nanographenes and excellent CPL brightness (BCPL ) of 32 M-1 cm-1 .

19.
Chem Commun (Camb) ; 59(2): 227-230, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36484248

ABSTRACT

A pair of inherently chiral belt-shaped conjugated macrocycles were conveniently synthesized starting from 2,7-fluoren[3]arene triflate, and they not only exhibited green fluorescence, but also showed circularly polarized luminescence with a |glum| of 2.0 × 10-3.

20.
Chem Commun (Camb) ; 58(87): 12180-12183, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36226618

ABSTRACT

A novel luminescent macrocycle has been conveniently synthesized, which displays flexible conformations and interesting solid-state host-guest properties. Besides, the macrocycle exhibits excellent thermally activated delayed fluorescence (TADF) emission with a photoluminescence quantum yield of 80%, which represents the highest value among reported TADF macrocycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...