Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 25(1): 63, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38439049

ABSTRACT

BACKGROUND: Centromeres are critical for maintaining genomic stability in eukaryotes, and their turnover shapes genome architectures and drives karyotype evolution. However, the co-evolution of centromeres from different species in allopolyploids over millions of years remains largely unknown. RESULTS: Here, we generate three near-complete genome assemblies, a tetraploid Brachypodium hybridum and its two diploid ancestors, Brachypodium distachyon and Brachypodium stacei. We detect high degrees of sequence, structural, and epigenetic variations of centromeres at base-pair resolution between closely related Brachypodium genomes, indicating the appearance and accumulation of species-specific centromere repeats from a common origin during evolution. We also find that centromere homogenization is accompanied by local satellite repeats bursting and retrotransposon purging, and the frequency of retrotransposon invasions drives the degree of interspecies centromere diversification. We further investigate the dynamics of centromeres during alloploidization process, and find that dramatic genetics and epigenetics architecture variations are associated with the turnover of centromeres between homologous chromosomal pairs from diploid to tetraploid. Additionally, our pangenomes analysis reveals the ongoing variations of satellite repeats and stable evolutionary homeostasis within centromeres among individuals of each Brachypodium genome with different polyploidy levels. CONCLUSIONS: Our results provide unprecedented information on the genomic, epigenomic, and functional diversity of highly repetitive DNA between closely related species and their allopolyploid genomes at both coarse and fine scale.


Subject(s)
Brachypodium , Diploidy , Humans , Tetraploidy , Brachypodium/genetics , Retroelements , Centromere/genetics
2.
Front Plant Sci ; 13: 1074873, 2022.
Article in English | MEDLINE | ID: mdl-36466281

ABSTRACT

Gene transcription is largely regulated by cis-regulatory elements. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) is an emerging technology that can accurately map cis-regulatory elements in animals and plants. However, the presence of cell walls and chloroplasts in plants hinders the extraction of high-quality nuclei, thereby affects the quality of ATAC-seq data. Meanwhile, it is tricky to perform ATAC-seq with different tissue types, especially for those with limited size and amount. Moreover, with rapid growth of ATAC-seq datasets from plants, powerful and easy-to-use data analysis pipelines for ATAC-seq, especially for wheat is lacking. Here, we provided an all-in-one solution for mapping open chromatin in wheat including both experimental and data analysis procedure. We efficiently obtained nuclei with less cell debris from various wheat tissues. High-quality ATAC-seq data from young spike and ovary, which are hard to harvest were generated. We determined that the saturation sequencing depth of wheat ATAC-seq is about 16 Gb. Particularly, we developed a powerful and easy-to-use online pipeline to analyze the wheat ATAC-seq data and this pipeline can be easily extended to other plant species. The method developed here will facilitate plant regulatory genome study not only for wheat but also for other plant species.

SELECTION OF CITATIONS
SEARCH DETAIL
...