Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 12(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35049659

ABSTRACT

C-reactive protein (CRP) is a non-specific biomarker of inflammation and may be associated with cardiovascular disease. In recent studies, systemic inflammatory responses have also been observed in cases of coronavirus disease 2019 (COVID-19). Molecularly imprinted polymers (MIPs) have been developed to replace natural antibodies with polymeric materials that have low cost and high stability and could thus be suitable for use in a home-care system. In this work, a MIP-based electrochemical sensing system for measuring CRP was developed. Such a system can be integrated with microfluidics and electronics for lab-on-a-chip technology. MIP composition was optimized using various imprinting template (CRP peptide) concentrations. Tungsten disulfide (WS2) was doped into the MIPs. Doping not only enhances the electrochemical response accompanying the recognition of the template molecules but also raises the top of the sensing range from 1.0 pg/mL to 1.0 ng/mL of the imprinted peptide. The calibration curve of the WS2-doped peptide-imprinted polymer-coated electrodes in the extended-gate field-effect transistor platform was obtained and used for the measurement of CRP concentration in real human serum.


Subject(s)
C-Reactive Protein/analysis , Molecularly Imprinted Polymers , Sulfides , Tungsten Compounds , Electrochemical Techniques , Electrodes , Humans , Peptides
2.
Biosens Bioelectron ; 200: 113930, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34979348

ABSTRACT

The level of C-reactive protein (CRP) in serum is frequently used to evaluate risk of coronary heart disease, and its concentration is related to cardiovascular disease, fibrosis and inflammation, cancer, and viral infections. In this work, three novel peptides, never previously used as imprinted templates, were selected, synthesized, and employed for epitope imprinting. Various imprinting concentrations of the template and various ratios of aniline (AN) to m-aminobenzenesulfonic acid (MSAN) were used in electropolymerization to form molecularly imprinted polymers (MIPs). The imprinting template and functional monomer concentrations were optimized to maximize the electrochemical response to target peptides. The surface morphologies of peptide- and non-imprinting poly(AN-co-MSAN) were observed using a scanning electron microscope (SEM) and an atomic force microscope (AFM). Moreover, the effect of doping of MIPs with a very small percentage of an MXene (e.g. Ti2C at 0.1 wt% in the preparation solution) on the electrochemical response was also studied. Ti2C doping dramatically increased sensing range from 0.1 to 100 fg/mL to 10000 fg/mL, and electrochemical responses were amplified by a factor of approximately 1.3 within the sensing range. Finally, commercially available serum was diluted and then measured using the MXene-doped PIP-coated electrodes to estimate the accuracy compared with ELISA results.


Subject(s)
Biosensing Techniques , Molecular Imprinting , C-Reactive Protein , Electrochemical Techniques , Peptides , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...