Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; : 100792, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810695

ABSTRACT

Immune cells that infiltrate the tumor microenvironment (TME) play crucial roles in shaping cancer development and influencing clinical outcomes and therapeutic responses. However, obtaining a comprehensive proteomic snapshot of tumor-infiltrating immunity in clinical specimens is often hindered by small sample amounts and a low proportion of immune infiltrating cells in the TME. To enable in-depth and highly sensitive profiling of microscale tissues, we established an immune cell-enriched library-assisted strategy for data-independent acquisition mass spectrometry (DIA-MS). Firstly, 6 immune cell subtype-specific spectral libraries were established from sorted CD8+, CD4+ T lymphocytes, B lymphocytes, natural killer cells, dendritic cells, and macrophages in murine mesenteric lymph nodes (MLNs), covering 7,815 protein groups with surface markers and immune cell-enriched proteins. The feasibility of microscale immune proteomic profiling was demonstrated on 1 µg tissue protein from the tumor of murine colorectal cancer (CRC) models using single-shot DIA; the immune cell-enriched library increased coverage to quantify 7,419 proteins compared to directDIA analysis (6,978 proteins). The enhancement enabled the mapping of 841 immune function-related proteins and exclusive identification of many low-abundant immune proteins, such as CD1D1, and CD244, demonstrating high sensitivity for immune landscape profiling. This approach was employed to characterize the MLNs in CRC models, aiming to elucidate the mechanism underlying their involvement in cancer development within the TME. Even with a low percentage of immune cell infiltration (0.25-3%) in the tumor, our results illuminate down-regulation in the adaptive immune signaling pathways (C-type lectin receptor signaling, chemokine signaling, etc.), T cell receptor signaling, and Th1/Th2/Th17 cell differentiation, suggesting an immunosuppressive status in MLNs of CRC models. The DIA approach using the immune cell-enriched libraries showcased deep coverage and high sensitivity that can facilitate illumination of the immune proteomic landscape for microscale samples.

2.
Cancers (Basel) ; 15(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37835538

ABSTRACT

Chimeric antigen receptor T cell (CAR-T) therapy has been applied in the treatment of B-cell lymphoma; however, CAR-T manufacturing requires virus- or non-virus-based genetic modification, which causes high manufacturing costs and potential safety concerns. Antibody-cell conjugation (ACC) technology, which originated from bio-orthogonal click chemistry, provides an efficient approach for arming immune cells with cancer-targeting antibodies without genetic modification. Here, we applied ACC technology in Vγ9Vδ2 T (γδ2 T) cells to generate a novel off-the-shelf CD20-targeting cell therapy ACE1831 (rituximab-conjugated γδ2 T cells) against relapsed/refractory B-cell lymphoma. ACE1831 exhibited superior cytotoxicity against B-cell lymphoma cells and rituximab-resistant cells compared to γδ2 T cells without rituximab conjugation. The in vivo xenograft study demonstrated that ACE1831 treatment strongly suppressed the aggressive proliferation of B-cell lymphoma and prolonged the survival of tumor-bearing mice with no observed toxicity. Mass spectrometry analysis indicated that cell activation receptors including the TCR complex, integrins and cytokine receptors were conjugated with rituximab. Intriguingly, the antigen recognition of the ACC-linked antibody/receptor complex stimulated NFAT activation and contributed to ACE1831-mediated cytotoxicity against CD20-expressing cancer cells. This study elucidates the role of the ACC-linked antibody/receptor complex in cytotoxicity and supports the potential of ACE1831 as an off-the-shelf γδ2 cell therapy against relapsed/refractory B-cell lymphoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...