Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 63(16): 4380-4385, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856617

ABSTRACT

In this paper, we demonstrate a facile way to prepare polymeric microlens arrays (MLAs) based on a discontinuous wetting surface using a self-assembly technique. A patterned hydrophobic-octadecyltrichlorosilane (OTS) surface was prepared by U V/O 3 irradiation through a shadow mask. The area exposed to U V/O 3 irradiation turned highly hydrophilic, whereas the area protected by the mask remained highly hydrophobic, generating the patterned OTS surface. The surface energy of the OTS/glass surface changed from 23 to 72.8 mN/m after 17 min of U V/O 3 treatment. The scribing of the optical glue-NOA 81 onto the microhole array enabled one to obtain the MLAs due to the generation of the NOA 81 droplet array via the surface tension. After UV light curing, the cured NOA 81 droplet array with uniform dimensions within a large area exhibited excellent MLA characteristics. Moreover, the method developed in this study is simple in operation, low-cost, and requires neither a clean room nor expensive equipment.

2.
Langmuir ; 40(11): 5809-5817, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38445621

ABSTRACT

A dielectric liquid microlens array (LMA) with a tunable focal length was fabricated by using a microdroplet array generated through the dip-coating method. The process began with treating the octadecyltrichlorosilane (OTS) layer with selective UV/O3 irradiation for 20 min to establish a hydrophilic-hydrophobic patterning surface. The substrate was subsequently immersed in glycerol and then withdrawn at a constant rate to create a microdroplet array. Upon filling the cell with matching oil (SL5267) and placing it within a square array of a 200 µm diameter glycerol microdroplet array, the LMA was produced. The focal length ranged from approximately -0.96 to -0.3 mm within a voltage range of 0 to 60 Vrms. The glycerol microdroplets, characterized by their shapes, sizes, curvatures, and filling factors, can be precisely controlled by designing an OTS patterning or adjusting the dip-coating speed. This approach offers a rapid and high-throughput method for preparation. Our approach to fabricating tunable LMA offers several advantages, including simplicity of fabrication, uniform structural properties, cost-effectiveness, polarization independence, and excellent optical performance. These focus-tunable LMAs hold significant potential for applications in image processing, 3D displays, medical endoscopy, and military technologies.

3.
ACS Nano ; 16(8): 12452-12461, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35938975

ABSTRACT

The detection of circularly polarized light (CPL) has aroused wide attention from both the scientific and industrial communities. However, from the optical activity of the chiral layer in the conventional CPL photodetectors, the sign inversion property is difficult to be achieved. As a result, great challenges arise during the preparation of miniaturized and integrated devices for tunable CPL detection applications. Along these lines, in this work, by taking advantage of the CPL-induced chirality characteristics of the achiral poly(9,9-di-n-hexylfluorene-alt-benzothiadiazole) (F6BT) and the good crystalline and electrical properties of the poly(3-hexylthiophene) (P3HT) film, an optically programmable CPL photodetector was fabricated. Interestingly, the device exhibited excellent discrimination between left- and right-handed CPL, while the maximum anisotropy factor of responsivity was 0.425. On top of that, the rigorously controlled chirality of the F6BT and the capability to be switched by the handedness of CPL was leveraged to realize the switchable detection of both L-CPL and R-CPL. Furthermore, a CPL photodetector array was fabricated, and the image processing and cryptographic characteristics were demonstrated. The proposed device configuration can find application in various scientific fields, including photonics, emission, conversion, or sensing with CPL but also is anticipated to play a key role for imaging and anticounterfeiting applications.

4.
Aging (Albany NY) ; 13(11): 15479-15490, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099590

ABSTRACT

Sirtuin 1 (SIRT1) is a class III histone deacetylase that exerts an anti-inflammatory effect in airway diseases. Activated macrophages play an important role in asthma. However, the roles of SIRT1 on allergic airway inflammation in macrophages remain largely unexplored. In this study, we aimed to determine the roles of SIRT1 on allergic airway inflammation in macrophages. The effect of myeloid-specific SIRT1 deletion (Sirt1fl/fl-LysMcre) on airway inflammation was assessed by using in vivo models of asthma following allergen exposure and in vitro culture of primary bone marrow-derived macrophages (BMDMs) exposed to house dust mite (HDM). We observed that Sirt1fl/fl-LysMcre mice substantially enhanced airway inflammation and mucus production in response to allergen exposure. Expression of chemokine ligand (CXCL) 2, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-α were reduced in BMDMs with myeloid-specific deletion of Sirt1 after stimulation of HDM. Moreover, SIRT1 suppressed the inflammatory cytokines expression in BMDMs partially via the ERK/p38 MAPK pathways. Our study demonstrated that SIRT1 suppresses the allergic airway inflammation in macrophages, and suggested that activation of SIRT1 in macrophages may represent therapeutic strategy for asthma.


Subject(s)
Asthma/pathology , Gene Deletion , Hypersensitivity/pathology , Inflammation/pathology , Lung/pathology , Myeloid Cells/metabolism , Sirtuin 1/metabolism , Allergens/adverse effects , Animals , Asthma/complications , Cytokines/metabolism , Disease Models, Animal , Hypersensitivity/complications , Inflammation/complications , Integrases/metabolism , MAP Kinase Signaling System , Macrophages/metabolism , Macrophages/pathology , Mice, Transgenic , Pyroglyphidae
5.
Pulm Pharmacol Ther ; 62: 101921, 2020 06.
Article in English | MEDLINE | ID: mdl-32615160

ABSTRACT

BACKGROUND: Bergenin, a type of polyphenol compound, exhibits antiulcerogenic, anti-inflammatory, antitussive, and burn wound-healing properties. However, its therapeutic effect on tumor necrosis factor α (TNF-α)-induced proinflammatory responses in the airway and potential mechanisms of actions are still unclear. This study aimed to investigate the anti-inflammatory effects and mechanism of bergenin in TNF-α-stimulated human bronchial epithelial (16-HBE) cells. METHODS: Cell Counting Kit-8 was used to evaluate cytotoxicity. Cytokine expression was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay. Immunofluorescence, western blot, and sirtuin-1 (SIRT1) activity assays were employed to investigate potential molecular mechanisms. RESULTS: Bergenin obviously decreased both mRNA and protein expression levels of interleukins 6 and 8 (IL-6 and IL-8) in TNF-α-stimulated 16-HBE cells. Bergenin blocked TNF-α-mediated activation of nuclear factor κB (NF-κB) signaling and NF-κB nuclear translocation. Interestingly, RT-qPCR and western blotting results revealed that bergenin did not affect SIRT1 expression, but significantly increased its activity. Bergenin-mediated SIRT1 activation was further confirmed by results indicating decreased acetylation levels of NF-κB-p65 and p53. Moreover, the inhibitory effects of bergenin on mRNA and protein expression levels of IL-6 and IL-8 were reversed by a SIRT1 inhibitor. In addition, combining bergenin and dexamethasone (DEX) yielded additive effects on the reduction of IL-6 and IL-8 expression. CONCLUSIONS: These findings demonstrate that bergenin could suppress TNF-α-induced proinflammatory responses by augmenting SIRT1 activity to block the NF-κB signaling pathway, which may provide beneficial effects for the treatment of airway inflammation associated with asthma.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzopyrans/pharmacology , Inflammation/drug therapy , NF-kappa B/drug effects , Sirtuin 1/metabolism , Cytokines/drug effects , Dexamethasone/pharmacology , Epithelial Cells , Humans , NF-kappa B/metabolism , Naphthols/pharmacology , Phenylpropionates/pharmacology , Signal Transduction/drug effects , Sirtuin 1/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology
6.
Int J Chron Obstruct Pulmon Dis ; 14: 1741-1752, 2019.
Article in English | MEDLINE | ID: mdl-31496673

ABSTRACT

Purpose: Particulate matter (PM) has been implicated as a risk factor for airway injury. However, the molecular mechanisms remain largely unclear. The goal of this study was to determine whether sirtuin1 (SIRT1), an anti-inflammatory and antiaging protein, protects against PM-induced airway inflammation. Methods: The effect of SIRT1 on PM-induced airway inflammation was assessed by using in vivo models of airway inflammation induced by PM and in vitro culture of human bronchial epithelial (HBE) cells exposed to PM, resveratrol (SIRT1 activator), or both. Results: PM-stimulated HBE cells showed a significant decrease in SIRT1 but a notable increase in inflammatory cytokines. SIRT1 gene silencing further enhanced PM-induced expression of inflammatory cytokines. In contrast, resveratrol, a SIRT1 activator, reduced the expression of these cytokines compared with the control cells. In vivo, SIRT1 expression was significantly decreased in lung tissues of PM-exposed mice. Interestingly, resveratrol treatment reversed the enhanced total cells, neutrophils and inflammatory cytokines in PM-induced mice. Moreover, SIRT1 mediated PM-induced inflammatory cytokines expression at least partly through MAPK pathways. Conclusion: These findings suggest that SIRT1 is involved in the pathogenesis of PM-induced airway inflammation and activation of SIRT1 could prevent airway disorders or disease exacerbations induced by airborne particulate pollution.


Subject(s)
Gene Expression Regulation , Inflammation/genetics , Particulate Matter/adverse effects , RNA/genetics , Respiratory Tract Diseases/genetics , Sirtuin 1/genetics , Animals , Blotting, Western , Bronchi/metabolism , Bronchi/pathology , Cells, Cultured , Disease Models, Animal , Humans , Inflammation/chemically induced , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Respiratory Tract Diseases/chemically induced , Respiratory Tract Diseases/metabolism , Sirtuin 1/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...