Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 134(2): 453-471, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33089345

ABSTRACT

Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members. However, the role of MYB proteins in rice anther development remains poorly understood. In this study, we isolated and characterized a male sterile mutant (with normal vegetative growth) of Baymax1 (BM1), which encodes a MYB protein. The bm1 mutant exhibited slightly lagging meiosis, aborted transition of the tapetum to a secretory type, premature tapetal degeneration, and abnormal pollen exine formation, leading to ultimately lacks of visible pollens in the mature white anthers. Map-based cloning, complementation and targeted mutagenesis using CRISPR/Cas9 technology demonstrated that the mutated LOC_Os04g39470 is the causal gene in bm1. BM1 is preferentially expressed in rice anthers from stage 5 to stage 10. Phylogenetic analysis indicated that rice BM1 and its homologs in millet, maize, rape, cabbage, and pigeonpea are evolutionarily conserved. BM1 can physically interacts with bHLH protein TIP2, EAT1, and PHD (plant homeodomain)-finger member TIP3, respectively. Moreover, BM1 affects the expression of several known genes related to tapetum and microspore development. Collectively, our results suggest that BM1 is one of key regulators for rice male fertility and may serve as a potential target for rice male-sterile line breeding and hybrid seed production.


Subject(s)
Gene Expression Regulation, Plant , Oryza/physiology , Phenotype , Plant Infertility , Plant Proteins/metabolism , Pollen/chemistry , Proto-Oncogene Proteins c-myb/metabolism , Mutation , Oryza/genetics , Phylogeny , Plant Breeding/methods , Plant Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics
2.
Int J Mol Sci ; 20(9)2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31035645

ABSTRACT

Pyrimidine nucleotides are important metabolites that are building blocks of nucleic acids, which participate in various aspects of plant development. Only a few genes involved in pyrimidine metabolism have been identified in rice and the majority of their functions remain unclear. In this study, we used a map-based cloning strategy to isolate a UMPK gene in rice, encoding the UMP kinase that phosphorylates UMP to form UDP, from a recessive mutant with pale-green leaves. In the mutant, UDP content always decreased, while UTP content fluctuated with the development of leaves. Mutation of UMPK reduced chlorophyll contents and decreased photosynthetic capacity. In the mutant, transcription of plastid-encoded RNA polymerase-dependent genes, including psaA, psbB, psbC and petB, was significantly reduced, whereas transcription of nuclear-encoded RNA polymerase-dependent genes, including rpoA, rpoB, rpoC1, and rpl23, was elevated. The expression of UMPK was significantly induced by various stresses, including cold, heat, and drought. Increased sensitivity to cold stress was observed in the mutant, based on the survival rate and malondialdehyde content. High accumulation of hydrogen peroxide was found in the mutant, which was enhanced by cold treatment. Our results indicate that the UMP kinase gene plays important roles in regulating chloroplast development and stress response in rice.


Subject(s)
Chloroplasts/physiology , Cold-Shock Response , Nucleoside-Phosphate Kinase/metabolism , Oryza/physiology , Plant Development , Cloning, Molecular , Cold-Shock Response/genetics , Gene Expression Regulation, Plant , Mutation , Nucleoside-Phosphate Kinase/genetics , Phenotype , Plant Development/genetics , Plastids/genetics , Transcription, Genetic
3.
Gene ; 526(2): 331-5, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23624393

ABSTRACT

This study aimed to elucidate the genetics of the adult root system in elite Chinese hybrid rice. Several adult root traits in a recombinant inbred line (RIL) population of Xieyou 9308 and two backcross F1 (BCF1) populations derived from the RILs were phenotyped under hydroponic culture at heading stage for quantitative trait locus (QTL) mapping and other statistical analysis. There a total of eight QTLs detected for the root traits. Among of them, a pleiotropic QTL was repeatedly flanked by RM180 and RM5436 on the short arm of chromosome 7 for multiple traits across RILs and its BCF1 populations, accounting for 6.88% to 25.26% of the phenotypic variances. Only additive/dominant QTLs were detected for the root traits. These results can serve as a foundation for facilitating future cloning and molecular breeding.


Subject(s)
Oryza/genetics , Plant Roots/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Chromosomes, Plant , Genetic Association Studies , Genetic Linkage , Phenotype , Physical Chromosome Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...