Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Talanta ; 279: 126559, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018950

ABSTRACT

Accurately monitoring H2O2 concentrations in 3D cell clusters is challenging due to limited diffusion and rapid degradation of H2O2 in the culture medium. Despite the incorporation of three-dimensional cell culture approaches, the detection technology has largely remained as a 2D planar system. In this study, we present a versatile approach of 3D electrochemical sensing utilizing carbon nanotubes as conductive scaffolds for in-situ monitoring of H2O2 in cell clusters. These scaffolds enabled direct contact between H2O2 released from cells and the electrodes, thereby improving sensitivity and ensuring biocompatibility for cell aggregates. The scaffolds exhibited electrocatalytic behavior with a limit of detection of 6.7 nM H2O2. Additionally, the electrochemical responses of cell clusters with the scaffolds exhibited significantly higher current compared to clusters without scaffolds when stimulated with model drugs. This study underscores the potential of conductive scaffolds for real-time monitoring of H2O2 released from cell clusters in 3D microenvironments.

2.
Anal Chim Acta ; 1293: 342285, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38331554

ABSTRACT

In this paper, we present a gradient porous hollow fiber structure integrated the signal transduction within a microspace, serving as a platform for cellular metabolism monitoring. We developed a nonenzymatic electrochemical electrode by coupling carbon nanotubes (CNT) and metal organic frameworks (MOF) nanozyme on three-dimensional (3D) gradient porous hollow fiber membrane (GPF) for in-situ detection of cell released hydrogen peroxide (H2O2). The GPF was used as a substrate for cell culture as well as the supporting matrix of the working electrode. The ultrasonically coupled CNT@MOF composite was immobilized on the outer surface of the GPF by means of pressure filtration. Notably, the MOF, acting as a peroxidase mimic, exhibits superior stability compared to traditional horseradish peroxidase. The incorporation of CNT not only provided sufficient specific surface area to improve the uniform distribution of MOF nanozyme, but also formed 3D conductive network. This network efficiently facilitates the electrons transfer during the catalytic process of the MOF, addressing the inherent poor conductivity of MOFs. The GPF-CNT@MOF nonenzymatic bioelectrode demonstrated excellent electrocatalytic performance including rapid response, satisfactory sensing selectivity, and attractive stability, which enabled the development of a robust in-situ cellular metabolic monitoring platform.


Subject(s)
Metal-Organic Frameworks , Nanotubes, Carbon , Metal-Organic Frameworks/chemistry , Nanotubes, Carbon/chemistry , Hydrogen Peroxide/chemistry , Porosity , Peroxidase , Electrochemical Techniques/methods
3.
Mikrochim Acta ; 191(2): 107, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38240908

ABSTRACT

A novel strategy based on gradient porous hollow fiber membrane (GPF) is proposed for the modular assembly of enzyme-nanozyme cascade systems. The porous structure of GPF provided sufficient specific surface area, while the gradient structure effectively minimized the leaching of enzymes and nanozymes. To enhance stability, we prepared and immobilized metal-organic framework (MOF) nanozymes, resulting in the fabrication of GPF-MOF with excellent stability and reusability for colorimetric H2O2 detection. To improve specificity and expand the detection range, micro-crosslinked natural enzymes were modularly assembled, using glucose oxidase as the model enzyme. The assembled system, GPF-mGOx@MOF, achieved a low detection limit of 0.009 mM and a linear range of 0.2 to 11 mM. The sensor retained 87.2% and 80.7% of initial activity after being stored for 49 days and 9 recycles, respectively. Additionally, the reliability of the biosensor was validated through glucose determination of human blood and urine samples, yielding comparable results to a commercial glucose meter.


Subject(s)
Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Glucose/chemistry , Hydrogen Peroxide/chemistry , Reproducibility of Results , Glucose Oxidase/chemistry
4.
Biosensors (Basel) ; 13(7)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37504123

ABSTRACT

Precision medicine, particularly therapeutic drug monitoring (TDM), is essential for optimizing drug dosage and minimizing toxicity. However, current TDM methods have limitations, including the need for skilled operators, patient discomfort, and the inability to monitor dynamic drug level changes. In recent years, wearable sensors have emerged as a promising solution for drug monitoring. These sensors offer real-time and continuous measurement of drug concentrations in biofluids, enabling personalized medicine and reducing the risk of toxicity. This review provides an overview of drugs detectable by wearable sensors and explores biosensing technologies that can enable drug monitoring in the future. It presents a comparative analysis of multiple biosensing technologies and evaluates their strengths and limitations for integration into wearable detection systems. The promising capabilities of wearable sensors for real-time and continuous drug monitoring offer revolutionary advancements in diagnostic tools, supporting personalized medicine and optimal therapeutic effects. Wearable sensors are poised to become essential components of healthcare systems, catering to the diverse needs of patients and reducing healthcare costs.


Subject(s)
Drug Monitoring , Wearable Electronic Devices , Humans , Drug Monitoring/methods , Precision Medicine/methods , Delivery of Health Care , Monitoring, Physiologic/methods
5.
J Pharm Anal ; 13(6): 673-682, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37440905

ABSTRACT

Glucose transporter 1 (GLUT1) overexpression in tumor cells is a potential target for drug therapy, but few studies have reported screening GLUT1 inhibitors from natural or synthetic compounds. With current analysis techniques, it is difficult to accurately monitor the GLUT1 inhibitory effect of drug molecules in real-time. We developed a cell membrane-based glucose sensor (CMGS) that integrated a hydrogel electrode with tumor cell membranes to monitor GLUT1 transmembrane transport and screen for GLUT1 inhibitors in traditional Chinese medicines (TCMs). CMGS is compatible with cell membranes of various origins, including different types of tumors and cell lines with GLUT1 expression knocked down by small interfering RNA or small molecules. Based on CMGS continuous monitoring technique, we investigated the glucose transport kinetics of cell membranes with varying levels of GLUT1 expression. We used CMGS to determine the GLUT1-inhibitory effects of drug monomers with similar structures from Scutellaria baicalensis and catechins families. Results were consistent with those of the cellular glucose uptake test and molecular-docking simulation. CMGS could accurately screen drug molecules in TCMs that inhibit GLUT1, providing a new strategy for studying transmembrane protein-receptor interactions.

6.
Talanta ; 257: 124368, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801558

ABSTRACT

In this work, we developed a facile method to fabricate laser induced versatile graphene-metal nanoparticles (LIG-MNPs) electrodes with redox molecules sensing capabilities. Unlike conventional post-electrodes deposition, versatile graphene-based composites were engraved by a facile synthesis process. As a general protocol, we successfully prepared modular electrodes including LIG-PtNPs and LIG-AuNPs and applied them to electrochemical sensing. This facile laser engraving process enables rapid preparation and modification of electrodes, as well as simple replacement of metal particles modification towards varied sensing targets. The LIG-MNPs showed high sensitivity towards H2O2 and H2S due to their excellent electron transmission efficiency and electrocatalytic activity. By simply changing the types of coated precursors, the LIG-MNPs electrodes have successfully achieved real-time monitoring of H2O2 released from tumor cells and H2S contained in wastewater. This work contributed a universal and versatile protocol for quantitatively detecting a wide range of hazardous redox molecules.

7.
Mikrochim Acta ; 190(2): 71, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36695915

ABSTRACT

Monitoring exocellular adenosine-5'-triphosphate (ATP) is a demanding task but the biosensor development is limited by the low concentration and rapid degradation of ATP. Herein, we developed a simple yet effective biosensor based on ZIF-67 loaded with bi-enzymes of glucose (GOx) and hexokinase (HEX) for effective detection of ATP. In the confined space of the porous matrix, the bi-enzymes competed for the glucose substrate in the presence of ATP, facilitating the biosensor to detect low ATP concentrations down to the micromole level (3.75 µM) at working potential of 0.55 V (vs. Ag/AgCl). Furthermore, ZIF-67 with cobalt served as a porous matrix to specifically adsorb ATP molecules, allowing it to differentiate isomers with sensitivity of 0.53 nA/µM, RSD of 5.4%, and recovery rate of 93.3%. We successfully applied the fabricated biosensor to measure ATP secreted from rat PC12 cells in the pericellular space thus realizing time-resolving measurement. This work paved the path for real-time monitoring of ATP released by cells, which will aid in understanding tumor cell glycolysis and immune responses.


Subject(s)
Enzymes, Immobilized , Glucose Oxidase , Animals , Rats , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Hexokinase/chemistry , Hexokinase/metabolism , Adenosine Triphosphate/chemistry , Glucose
8.
Food Chem ; 398: 133951, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35987009

ABSTRACT

In this paper, we developed a sensor for on-site measuring beverage sucrose level based on cascade enzyme particles and a blood glucose meter. The cascade enzyme particles with sucrose hydrolyzing capability were prepared by co-precipitation of manganese carbonate, in which the stability of the enzymes was substantially enhanced by the particle encapsulation effect. The quantitative measurement of glucose produced by the hydrolysis of sucrose was performed using a commercial glucose meter, a commonly owned electrochemical device in homes, greatly improving detection accuracy and expanding applications. Actual sample testing demonstrated the high sensitivity and selectivity of the sensor, allowing for accurate detection of sucrose in beverages. This sensing strategy can also be further expanded to a variety of analytical assays, using blood glucose meters for portable quantitative testing.


Subject(s)
Biosensing Techniques , Blood Glucose , Beverages , Catalysis , Glucose , Sucrose
9.
Anal Chim Acta ; 1226: 340263, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36068062

ABSTRACT

The upregulation of glucose transporter (GLUT) is a typical pathological marker in numerous cancer types and a potential target for anti-cancer drug therapy. We developed a cell membrane-based glucose sensor for real-time monitoring of GLUT transport kinetics. By combining hydrogel layers and liposomes, a planar cell membrane was constructed over the electrode, preventing pore leakage and allowing for highly sensitive and selective measurements. Based on this continuous monitoring technique, we investigated the effect of GLUT1-specific inhibitors such as Cytorelaxation B and BAY-876. We also measured the affinity of different hexoses to GLUT1 using a normalized response time comparison based on the cell membrane sensor. Experimental results were consistent with the molecular docking simulation, indicating that the sensor can be adapted to measure the glucose transport kinetics in different pharmacological conditions. This work demonstrated that cell membrane transport channels could maintain their transmembrane function in-vitro, and it has potential application in evaluating drug-receptor interaction.


Subject(s)
Glucose Transport Proteins, Facilitative , Monosaccharide Transport Proteins , Biological Transport , Cell Membrane/metabolism , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 1/metabolism , Kinetics , Molecular Docking Simulation
10.
Biosensors (Basel) ; 12(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36140097

ABSTRACT

In this paper, we report a point-of-care (POCT) testing strip based on a porous membrane structure for whole blood separation and colorimetric analysis without external supporting equipment. Conventional blood tests rely on large instruments for blood pretreatment and separation to improve measurement accuracy. Cellulose acetate (CA) membranes with different pore diameters and structures were prepared via a non-solvent method for the separation of whole blood. Among them, CA@PEG-2000 membranes with nano-pores on the surface and micro-pores in the interior facilitated the capture of blood cells on the surface, as well as the free diffusion of plasma through the porous interior structure. The fluid flow of blood in the asymmetric porous structure can be theoretically estimated using the Lucas-Washburn equation. Compared with the conventional paper strips and other porous membranes, the CA@PEG-2000 membrane with an immobilized sensing layer exhibited efficient blood separation, a short response time (less than 2 min), an ultralow dosage volume (5 µL), and high sensitivity. The fabricated blood separation membranes can be further used for the detection of various biomarkers in whole blood, providing additional options for rapid quantitative POCT tests.


Subject(s)
Colorimetry , Plasma , Biomarkers/analysis , Plasma/chemistry , Point-of-Care Testing , Porosity
11.
Anal Chim Acta ; 1221: 340168, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35934387

ABSTRACT

Targeting the long-term monitoring of biological carbohydrate metabolism, we developed a one-step screen-printing method to fabricate electrochemical sensors using an enzyme microparticle hybrid ink. Most enzymes have low stability in high temperatures and organic solvents, making conventional enzyme modification a bottom-up procedure to be performed after electrode fabrication, resulting in inactivation and detachment in long-term work. Enzyme-loaded microparticles prepared by manganese carbonate co-precipitation had higher stability than free enzymes, which could to be mixed directly with carbon paste for direct screen-printing. Due to the co-printing immobilization and the local hydration environment in enzyme particles, the prepared electrodes exhibited higher long-term operational stability than the conventional multi-step cross-linking method. In the sensing applications, we prepared microparticles loaded with single enzyme (glucose oxidase) and dual enzymes (ß-galactosidase and glucose oxidase) for glucose and lactose monitoring, respectively. Both electrodes can accurately measure the consumption of the corresponding carbohydrates throughout the cell or bacterial culture period thus providing a sensing platform for bio-metabolic monitoring and drug screening.


Subject(s)
Biosensing Techniques , Glucose Oxidase , Biosensing Techniques/methods , Electrodes , Glucose , Glucose Oxidase/metabolism , Ink
12.
Nat Commun ; 13(1): 1363, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296659

ABSTRACT

Deregulation of alternative splicing is implicated as a relevant source of molecular heterogeneity in cancer. However, the targets and intrinsic mechanisms of splicing in hepatocarcinogenesis are largely unknown. Here, we report a functional impact of a Splicing Regulatory Glutamine/Lysine-Rich Protein 1 (SREK1) variant and its regulator, Serine/arginine-rich splicing factor 10 (SRSF10). HCC patients with poor prognosis express higher levels of exon 10-inclusive SREK1 (SREK1L). SREK1L can sustain BLOC1S5-TXNDC5 (B-T) expression, a targeted gene of nonsense-mediated mRNA decay through inhibiting exon-exon junction complex binding with B-T to exert its oncogenic role. B-T plays its competing endogenous RNA role by inhibiting miR-30c-5p and miR-30e-5p, and further promoting the expression of downstream oncogenic targets SRSF10 and TXNDC5. Interestingly, SRSF10 can act as a splicing regulator for SREK1L to promote hepatocarcinogenesis via the formation of a SRSF10-associated complex. In summary, we demonstrate a SRSF10/SREK1L/B-T signalling loop to accelerate the hepatocarcinogenesis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Alternative Splicing/genetics , Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/metabolism , Exons/genetics , Humans , Liver Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Disulfide-Isomerases/metabolism , Repressor Proteins/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Up-Regulation
13.
ACS Appl Mater Interfaces ; 14(7): 9644-9654, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35133787

ABSTRACT

Highly sensitive and selective analysis of sweat at ultra-low sample volume remains a major challenge in the field of biosensing. Manipulation of small volumes of liquid for efficient sampling is essential to address this challenge. A hybrid Janus membrane with dual-asymmetry integration of wettability and conductivity is developed for regulated micro-volume liquid transport in wearable sweat biosensing. Unlike the uncontrollable liquid diffusion in a conventional porous membrane, the asymmetric wettability of porous Janus membrane leads to unique unidirectional liquid transport with high breakthrough pressure (1737.66 Pa) and fast self-pumping rate (35.94 µL/min) for micro-volume liquid sampling. The asymmetric conductive layer shows excellent flexible conductivity, anti-interference of friction, and efficient electrochemical interface due to the in situ generation of gold nanoparticles on one side of the membrane. The fabricated Pt-enzyme electrodes on the membrane promises effective testing range, great selectivity, and high sensitivity and accuracy (correlation efficiency, glucose: R2 = 0.999, lactate: R2 = 0.997), enabling ultra-low volume (∼0.15 µL) real time measurements on the skin surface. The innovative Janus membrane with unidirectional, self-pumping, and anti-interference performance provides a new strategy for miniaturized wearable microfluidic sweat electrochemical biosensor preparation in athletic performance evaluation, health monitoring, disease diagnosis, intelligent medicine, and so forth.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Wearable Electronic Devices , Gold , Sweat , Wettability
14.
Biosensors (Basel) ; 11(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209334

ABSTRACT

The excess of low-density lipoprotein (LDL) strongly promotes the accumulation of cholesterol on the arterial wall, which can easily lead to the atherosclerotic cardiovascular diseases (ACDs). It is a challenge on how to recognize and quantify the LDL with a simple and sensitive analytical technology. Herein, ß-cyclodextrins (ß-CDs), acting as molecular receptors, can bind with LDL to form stable inclusion complexes via the multiple interactions, including electrostatic, van der Waals forces, hydrogen bonding and hydrophobic interactions. With the combination of gold nanoparticles (Au NPs) and ß-CDs, we developed an electrochemical sensor providing an excellent molecular recognition and sensing performance towards LDL detection. The LDL dynamic adsorption behavior on the surface of the ß-CD-Au electrode was explored by electrochemical impedance spectroscopy (EIS), displaying that the electron-transfer resistance (Ret) values were proportional to the LDL (positively charged apolipoprotein B-100) concentrations. The ß-CD-Au modified sensor exhibited a high selectivity and sensitivity (978 kΩ·µM-1) toward LDL, especially in ultra-low concentrations compared with the common interferers HDL and HSA. Due to its excellent molecular recognition performance, ß-CD-Au can be used as a sensing material to monitor LDL in human blood for preventing ACDs in the future.


Subject(s)
Biosensing Techniques , Lipoproteins, LDL/analysis , beta-Cyclodextrins/chemistry , Adsorption , Electrochemical Techniques , Electrodes , Gold , Humans , Metal Nanoparticles
15.
Biosens Bioelectron ; 191: 113442, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34157599

ABSTRACT

Nitric oxide plays important transmission and regulation roles in the human body, but its in-vitro concentration is extremely low with a short half-life. In this work, we developed a three-dimensional 'flow-through' configuration based on polysulfone hollow fiber (PHF) for efficient detection of cell released NO. The PHF served as the substrate for cell culture as well as the base layer of the working electrode. The carbon nanotubes-gold nanoparticles (CNT-AuNPs) composites uniformly wrapped around the PHF as the sensing layer. The CNT provided a large specific surface area, which allowed uniform distribution and high loading of AuNPs, thus enhancing the electrocatalytic activity synergistically. Compared with the conventional flow-by configuration, such configuration resulted in a higher surface area per unit volume and enhanced NO molecule capture efficiency. The CNT-AuNPs PHF sensor showed a low detection limit (91 nM), high stability, selectivity, and biocompatibility. We utilized it for real-time in-situ detection of NO released by human lung cancer cell H1299 under drug stimulation. Furthermore, owing to the unique PHF structure, we performed long-term monitoring of NO release under the treatment of Lipopolysaccharide, Nitroglycerin and Aminoguanidine, which helps to understand the kinetic process of cellular drug response.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanotubes, Carbon , Gold , Humans , Nitric Oxide , Porosity
16.
Biosens Bioelectron ; 190: 113413, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34116446

ABSTRACT

Modified metal-organic frameworks (MOFs) doping with enzymes exhibit high enzyme stability and catalytic performance, which is a research hotspot in the field of enzyme-based sensing. Although the MOF-enzyme constitutes a 3D structure in the nanoscale, the macroscopic assembly configuration still stays in 1D or 2D structures, limiting sensing applications towards complex biological targets. Herein, the MOF-enzyme hybrid nanosystem was assembled into 3D porous conductive supports via a controllable physical embedding method, displaying high enzymatic loading, stability and cascade catalytic performance. The modified MOFs combing with enzymes served as a sensing reaction system, and the conductive hollow fiber membranes (HFMs) served as a functional platform. The multifunctional device integrates pumpless hydrodynamic transport, interconnected conductive polymer, and blood separation modules, showing fast capillary fluid flow, trace sampling (3 µL), high selectivity and accuracy. The linear sensing range was in 2-24 mM glucose, 0.05-6 mM lactic acid, and 0.1-10 mM cholesterol, respectively, with sensitivities of 24.2, 150, 73.6 nA mM-1. Furthermore, this strategy of modular assembly of biosensing array can easily implement multiplex metabolites detection simultaneously.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Catalysis , Electric Conductivity , Glucose
17.
Biosens Bioelectron ; 186: 113246, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33965791

ABSTRACT

Direct serological detection, due to its clinical facility and testing economy, affords prominent clinical values to the early detection of cancer. Surface-enhanced Raman spectroscopy (SERS)-based sensors have shown great promise in realizing this form of detection. Detecting liver cancer early with such a form, especially in terms of monitoring the pathogenic progression from hepatic inflammations to cancer, is the most effective clinical path to reducing the mortality rate. However, the methodology investigation for this purpose remains a formidable challenge. We fabricated a SERS-based sensor, consisting of Au-Ag nanocomplex-decorated ZnO nanopillars on paper. The sensor has an analytic enhancement factor of 1.02 × 107, which is enough to sense the biomolecular information of liver diseases through direct serum SERS analysis. A convolutional neural network (CNN) classifier for recognizing serum SERS spectra was constructed by deep learning. Integrating this sensor with the CNN, we established an intelligent biosensing method and realized direct serological detection of liver diseases within 1 min. As a proof-of-concept, the method achieved a prediction accuracy of 97.78% on an independent test dataset randomly sampled from 30 normal controls, 30 hepatocellular carcinoma (HCC) cases, and 30 hepatitis B (HB) patients. The results suggest this method can be developed for detecting liver diseases clinically and is worthy of exploration as a means of liver cancer surveillance. The presented sensor holds potential for clinical translation to the direct serological detection of diseases.

18.
Colloids Surf B Biointerfaces ; 201: 111638, 2021 May.
Article in English | MEDLINE | ID: mdl-33639505

ABSTRACT

Inorganic-enzyme composites have been widely used for applications in catalysis and analytical science. Amorphous calcium phosphate, as a biocompatible material, can form open hydrated structure to encapsulate and protect enzymes. So far, there have been few progress on size-adjustable amorphous calcium phosphate nanoparticles since the diameter controllability is limited by its natural aggregation characteristics. By co-precipitation and nano-channel extrusion, we developed enzyme-loaded amorphous calcium phosphate nanoparticles with adjustable diameters. These enzyme-loaded particles showed high thermal and chemical stability as well as biocompatibility. The nano-sized enzyme-loaded particles can further expand their application fields and be used as intracellular enzyme probes. Delivering glucose oxidase enzyme by amorphous calcium phosphate nanoparticles enables fluorescent monitoring of glucose levels in living cells, which can be used to study the metabolism rates of cancer cells and normal cells. The nano-channel extrusion method can also be used as a template to encapsulate different kinds of enzymes to expand catalysis and biosensing applications.


Subject(s)
Calcium Phosphates , Nanoparticles , Biocompatible Materials , Biosensing Techniques , Glucose Oxidase
19.
J Colloid Interface Sci ; 592: 22-32, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33639535

ABSTRACT

The micro-volume analysis and specific detection are both essential requirements in the field of chemical sensing and biological testing. Membrane prefiltration can be used to improve the selectivity and accuracy of detection. But for traditional porous membrane filtration, it is difficult to achieve the transmembrane transport of micro-volume liquid due to the influence of lateral diffusion on membrane surface. Herein, we studied the focused transmembrane transport of micro-volume liquid in the porous polyethersulfone membrane with asymmetric (Janus) surface wettability. The hydrophilic layer (polydopamine) and hydrophobic layer (fluoropolymer) were deposited with controllable thickness by dip-coating and roller-assisted liquid printing. The micro-volume liquid focusing effect was verified by experiments such as visual wetting circle and fluorescent tracer. The liquid focusing effect of as-prepared Janus membrane was integrated with glucose test strip in the application of micro-volume liquid biosensing. Compared with conventional porous membrane, detected signal amplitude and response time were improved 7.5× and 2.7×, respectively. In summary, this research studied the dynamics of liquid transport through Janus membrane and provides a new strategy for microfluidic detection applications through balancing detection volume, time and selectivity by the advantage of micro-volume liquid focusing effect.


Subject(s)
Wettability , Hydrophobic and Hydrophilic Interactions , Porosity
20.
NanoImpact ; 21: 100296, 2021 01.
Article in English | MEDLINE | ID: mdl-35559784

ABSTRACT

The clinical needs of rapidly screening liver cancer in large populations have asked for a facile and low-cost point-of-care testing (POCT) method. We present a nanoplasmonics biosensing chip (NBC) that would empower antibody-free detection with simplified analysis procedures for POCT. The cheaply fabricable NBC consists of multiple silver nanoparticle-decorated ZnO nanorods on cellulose filter paper and would enable one-drop blood tests through surface-enhanced Raman spectroscopy (SERS) detection. In this work, utilizing such an NBC and deep neural network (DNN) modeling, a direct serological detection platform was constructed for automatically identifying liver cancer within minutes. This chip could enhance Raman signals enough to be applied to POCT. A classification DNN model was established by spectrum-based deep learning with 1140 serum SERS spectra in equal proportions from hepatocellular carcinoma (HCC) patients and healthy individuals, achieving an identification accuracy of 91% on an external validation set of 100 spectra (50 HCC versus 50 healthy). The intelligent platform, based on the biosensing chip and DNN, has the potential for clinical applications and generalizable use in quickly screening or detecting other types of cancer.


Subject(s)
Carcinoma, Hepatocellular , Deep Learning , Liver Neoplasms , Metal Nanoparticles , Carcinoma, Hepatocellular/diagnosis , Early Detection of Cancer , Humans , Liver Neoplasms/diagnosis , Metal Nanoparticles/chemistry , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...