Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(12): e0295945, 2023.
Article in English | MEDLINE | ID: mdl-38127873

ABSTRACT

Pine wilt disease (PWD) is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted by a vector insect, the Monochamus alternatus. The PWN has caused much extensive damage to pine-dominated forest ecosystems. Trunk injection of emamectin benzoate (EB) has been found to be the most useful protective measure against the PWN, due to its low effective dose and long residence time in the field. However, the interactions between EB and the host or the environment remain largely unknown, which limits the efficacy and stability of EB in practical field settings. In this study, we investigated the impact on PWN from EB injection for both adult and young host plants (Pinus massoniana) by taking a multi-omics (phenomics, transcriptomics, microbiome, and metabolomics) approach. We found that EB injection can significantly reduce the amount of PWN in both living adult and young pine trees. Additionally, EB was able to activate the genetic response of P. massoniana against PWN, promotes P. massoniana growth and development and resistance to Pine wilt disease, which requires the presence of PWN. Further, the presence of EB greatly increased the accumulation of reactive oxygen species (ROS) in the host plant in a PWN-dependent manner, possibly by affecting ROS-related microbes and metabolites. Moreover, we uncovered the function of EB limiting the consumption of P. massoniana by the JPS. Based on biochemical and gut microbial data, we found that EB can significantly reduces cellulase activity in JPS, whose transcription factors, sugar metabolism, and the phosphotransferase system are also affected. These results document the impact of EB on the entire PWD transmission chain through multi-omics regarding the dominant pine (P. massoniana) in China and provide a novel perspective for controlling PWD outbreaks in the field.


Subject(s)
Coleoptera , Pinus , Animals , Reactive Oxygen Species , Pinus/genetics , Ecosystem , Gene Expression Profiling , Coleoptera/genetics , Antinematodal Agents/pharmacology , Plant Diseases/genetics
2.
Front Plant Sci ; 14: 1257744, 2023.
Article in English | MEDLINE | ID: mdl-38023855

ABSTRACT

Introduction: Pine wilt disease (PWD) is responsible for extensive economic and ecological damage to Pinus spp. forests and plantations worldwide. PWD is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted into pine trees by a vector insect, the Japanese pine sawyer (JPS, Monochamus alternatus). Host infection by PWN will attract JPS to spawn, which leads to the co-existence of PWN and JPS within the host tree, an essential precondition for PWD outbreaks. Through the action of their metabolites, microbes can manipulate the co-existence of PWN and JPS, but our understanding on how key microorganisms engage in this process remains limited, which severely hinders the exploration and utilization of promising microbial resources in the prevention and control of PWD. Methods: In this study we investigated how the PWN-associated fungus Aspergillus promotes the co-existence of PWN and JPS in the host trees (Pinus massoniana) via its secondary metabolite, sterigmatocystin (ST), by taking a multi-omics approach (phenomics, transcriptomics, microbiome, and metabolomics). Results: We found that Aspergillus was able to promote PWN invasion and pathogenicity by increasing ST biosynthesis in the host plant, mainly by suppressing the accumulation of ROS (reactive oxygen species) in plant tissues that could counter PWN. Further, ST accumulation triggered the biosynthesis of VOC (volatile organic compounds) that attracts JPS and drives the coexistence of PWN and JPS in the host plant, thereby encouraging the local transmission of PWD. Meanwhile, we show that application of an Aspergillus inhibitor (chiricanine A treatment) results in the absence of Aspergillus and decreases the in vivo ST amount, thereby sharply restricting the PWN development in host. This further proved that Aspergillus is vital and sufficient for promoting PWD transmission. Discussion: Altogether, these results document, for the first time, how the function of Aspergillus and its metabolite ST is involved in the entire PWD transmission chain, in addition to providing a novel and long-term effective nematicide for better PWD control in the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...