Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 32(11): 3883-3892, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34898104

ABSTRACT

Hainan Tropical Rainforest National Park has the most representative and largest contiguous tropical rainforest in China, which has advantages in exploring the realization mechanism of ecological product value in national parks. Based on the basic framework of "The Technical Guideline on Gross Ecosystem Product (GEP)", we constructed a GEP accounting system in line with the characteristics of tropical rain forest national park, and calculated the GEP of Hainan Tropical Rainforest National Park in 2019. The results showed that the GEP of Hainan Tropical Rainforest National Park in 2019 was 204.513 billion yuan, and the GEP per unit area was 0.046 billion yuan·km-2. Among all the service types, the value of material services was 4.850 billion yuan, accounting for 2.4% of the total GEP in the national park. The ecosystem regulation service value was 168.891 billion yuan, accounting for 82.6%. The value of cultural services was 30.772 billion yuan, accounting for 15.0%. Among different ecosystem types, the unit area value of the tropical rain forest ecosystem represented by mountain rain forest, lowland rain forest, deciduous monsoon forest, and tropical cloud forest was much higher than that of plantation or other ecosystems, indicating the dominant role of tropical rain forest ecosystem in providing ecosystem services. In addition, based on the GEP accounting results of the national park, we put forward relevant suggestions for further exploring the realization path and realization mechanism of ecological product value.


Subject(s)
Ecosystem , Rainforest , China , Forests , Parks, Recreational
2.
Org Lett ; 23(11): 4214-4218, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33983749

ABSTRACT

An electrochemically regioselective C-H phosphorothiolation of (hetero)arenes with thiocyanate as the S source under ultrasonic irradiation has been developed. The synergistic cooperation of electrooxidation and ultrasonication markedly accelerated the C-H phosphorothiolation reaction. This mechanistically different method is distinguished by its wide substrate scope and transition-metal-free and external-oxidant-free conditions, thus complementing the existing metal-catalyzed or peroxide-mediated protocols for the green synthesis of S-(hetero)aryl phosphorothioates.

3.
Oecologia ; 174(2): 567-80, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24085637

ABSTRACT

The foliar stable N isotope ratio (δ(15)N) can provide integrated information on ecosystem N cycling. Here we present the δ(15)N of plant and soil in four remote typical tropical rainforests (one primary and three secondary) of southern China. We aimed to examine if (1) foliar δ(15)N in the study forests is negative, as observed in other tropical and subtropical sites in eastern Asia; (2) variation in δ(15)N among different species is smaller compared to that in many N-limited temperate and boreal ecosystems; and (3) the primary forest is more N rich than the younger secondary forests and therefore is more (15)N enriched. Our results show that foliar δ(15)N ranged from -5.1 to 1.3‰ for 39 collected plant species with different growth strategies and mycorrhizal types, and that for 35 species it was negative. Soil NO3 (-) had low δ(15)N (-11.4 to -3.2‰) and plant NO3 (-) uptake could not explain the negative foliar δ(15)N values (NH4 (+) was dominant in the soil inorganic-N fraction). We suggest that negative values might be caused by isotope fractionation during soil NH4 (+) uptake and mycorrhizal N transfer, and by direct uptake of atmospheric NH3/NH4 (+). The variation in foliar δ(15)N among species (by about 6‰) was smaller than in many N-limited ecosystems, which is typically about or over 10‰. The primary forest had a larger N capital in plants than the secondary forests. Foliar δ(15)N and the enrichment factor (foliar δ(15)N minus soil δ(15)N) were higher in the primary forest than in the secondary forests, albeit differences were small, while there was no consistent pattern in soil δ(15)N between primary and secondary forests.


Subject(s)
Ecosystem , Nitrogen Cycle , Nitrogen Isotopes/analysis , Soil/chemistry , Biomass , China , Mycorrhizae , Plant Leaves/chemistry , Plants/chemistry , Plants/microbiology , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...