Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37238863

ABSTRACT

Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.

2.
Carbohydr Polym ; 213: 304-310, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30879673

ABSTRACT

Chitin nanocrystal (ChiNC) was fabricated based on p-toluenesulfonic acid -choline chloride deep eutectic solvent treatment. The obtained ChiNC was about 12-44 nm in width and 206-399 nm in length. The crystalline structure and the functional groups of ChiNC were maintained during the preparation process. Moreover, porcine pancreas lipase (PPL) was successfully immobilized onto the ChiNC to form the immobilized PPL (PPL@ChiNC). The resulting PPL@ChiNC has enzyme loading and activity recovery of 35.6 mg/g and 82.5%, respectively. The thermal stability, pH and temperature adaptabilities of PPL@ChiNC was improved, comparing with free PPL. The demonstrated DES treatment process was efficient for ChiNC preparation and the as-prepared ChiNC exhibited great potentials in biocatalysis and biomedical field.


Subject(s)
Benzenesulfonates/chemistry , Chitin/chemistry , Choline/chemistry , Nanoparticles/chemistry , Chitin/chemical synthesis , Hydrolysis , Particle Size , Solvents/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...