Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2352-2359, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282864

ABSTRACT

This study aims to explore the mechanism of Yanghe Decoction(YHD) against subcutaneous tumor in pulmonary metastasis from breast cancer, which is expected to lay a basis for the treatment of breast carcinoma with YHD. The chemical components of medicinals in YHD, and the targets of the components were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The disease-related targets were searched from GeneCards and Online Mendelian Inheritance in Man(OMIM). Excel was employed to screen the common targets and plot the Venn diagram. The protein-protein interaction network was constructed. R language was used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. A total of 53 female SPF Bablc/6 mice were randomized into normal group(same volume of normal saline, ig), model group(same volume of normal saline, ig), and low-dose and high-dose YHD groups(YHD, ig, 30 days), with 8 mice in normal group and 15 mice in each of the other groups. Body weight and tumor size was measured every day. Curves for body weight variation and growth of tumor in situ were plotted. In the end, the subcutaneous tumor sample was collected and observed based on hematoxylin and eosin(HE) staining. The mRNA and protein levels of hypoxia inducible factor-1α(HIF-1α), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and glucose transporter type 1(GLUT1) were detected by PCR and Western blot. A total of 213 active components of YHD and 185 targets against the disease were screened out. The hypothesis that YHD may regulate glycolysis through HIF-1α signaling pathway to intervene in breast cancer was proposed. Animal experiment confirmed that the mRNA and protein levels of HIF-1α, PKM2, LDHA, and GLUT1 in the high-and low-dose YHD groups were lower than those in the model group. YHD has certain inhibitory effect on subcutaneous tumor in pulmonary metastasis from breast cancer in the early stage, which may intervene pulmonary metastasis from breast cancer by regulating glycolysis through HIF-1α signaling pathway.


Subject(s)
Animal Experimentation , Drugs, Chinese Herbal , Neoplasms , Female , Mice , Animals , Glucose Transporter Type 1/genetics , Network Pharmacology , Saline Solution , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Signal Transduction , Glycolysis , RNA, Messenger , Neoplasms/drug therapy , Molecular Docking Simulation
2.
Comput Math Methods Med ; 2022: 4640849, 2022.
Article in English | MEDLINE | ID: mdl-36118824

ABSTRACT

Traditional Chinese medicine (TCM) is applied in the anticancer adjuvant therapy of various malignancies and pancreatic cancer included. Xiaoji recipe consists several TCM materials with anticancer activities. In our work, we intended to analyze the molecular targets as well as the underlying mechanisms of Xiaoji recipe against pancreatic cancer. A total of 32 active components and 522 potential targets of Xiaoji recipe were selected using the TCMSP and SwissTargetPrediction databases. The potential target gene prediction in pancreatic cancer was performed using OMIM, Disgenet, and Genecards databases, and totally, 998 target genes were obtained. The component-disease network was constructed using the Cytoscape software, and 116 shared targets of pancreatic cancer and Xiaoji recipe were screened out. As shown in the protein-protein interaction (PPI) network, the top 20 hub genes such as TP53, HRAS, AKT1, VEGFA, STAT3, EGFR, and SRC were further selected by degree. GO and KEGG functional enrichment analysis revealed that Xiaoji recipe may affect pancreatic cancer progression by targeting the PI3K/AKT and MAPK signaling pathways. Moreover, we performed in vitro assays to explore the effect of Xiaoji recipe on pancreatic cancer cells. The results revealed that Xiaoji recipe suppressed the viability and migration and promoted the apoptosis of pancreatic cancer cells via the inactivation of PI3K/AKT, MAPK, and STAT3 pathways. The findings of our study suggested the potential of Xiaoji recipe in the targeting therapy of pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Phosphatidylinositol 3-Kinases , Drugs, Chinese Herbal , ErbB Receptors/genetics , ErbB Receptors/therapeutic use , Humans , Network Pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt , Pancreatic Neoplasms
3.
Article in English | MEDLINE | ID: mdl-35873647

ABSTRACT

Background: Yanghe decoction is a famous formula consisting of Rehmannia, deer horn gum, cinnamon, rue, Ephedra, ginger charcoal, and licorice. However, few studies have explored the role of the potential mechanism of Yanghe decoction in the treatment of Hashimoto's thyroiditis by metabolomics. Methods: Nine mice were randomly divided into three groups: control group (group C), model group (group M), and drug administration group (group T), with three mice in each group. Mice in groups M and T were established as models of Hashimoto's thyroiditis, and group T was treated with Yanghe decoction. The metabolome of plasma samples from each group of mice was determined using mass spectrometry coupled with high-performance liquid and gas phases, and nuclear magnetic resonance. Based on the three assays, principal component analysis was performed on all samples, as well as orthogonal partial least squares-discriminant analysis and differential metabolite molecules for groups M and T. Subsequently, pathway enrichment analysis was performed, and the intersection was taken for the differential metabolites screened in the M and T groups. The levels of inflammatory factors IL-35 and IL-6 within the serum of each group of mice were detected. Results: The difference analysis showed that a total of 38 differential metabolites were screened based on mass spectrometry coupled with the high-performance liquid phase, 120 differential metabolites were screened based on mass spectrometry coupled with gas phase, and a total of α-glucose and ß-glucose were the differential metabolites analyzed based on NMR test results. The pathways enriched by the differential metabolites in the M and T groups were intersected, and a total of 5 common pathways were obtained (amino acid tRNA biosynthesis, D-glutamine and D-glutamate metabolism, tryptophan metabolism, nitrogen metabolism, and arginine and proline metabolism). The results also showed a significant decrease in the serum inflammatory factor IL-35 and a significant increase in IL-6 in mice from group M compared with group C, while a significant increase in the serum inflammatory factor IL-35 and a significant decrease in IL-6 in mice from group T compared with group M. Conclusion: Our study reveals the metabolites as well as a metabolic network that can be altered by Yanghe decoction treatment of Hashimoto's thyroiditis and shows that Yanghe decoction can effectively reduce the level of inflammatory factors in Hashimoto's thyroid.

4.
Front Pharmacol ; 12: 645354, 2021.
Article in English | MEDLINE | ID: mdl-34234669

ABSTRACT

Inflammation is an important contributor to autoimmune thyroiditis. Yanghe decoction (YH) is a traditional Chinese herbal formulation which has various anti-inflammatory effects. It has been used for the treatment of autoimmune diseases such as ankylosing spondylitis In this study we aimed to investigate the effects of YH on autoimmune thyroiditis in a rat model and elucidate the underlying mechanisms. The experimental autoimmune thyroiditis (EAT) model was established by thyroglobulin (pTG) injections and excessive iodine intake. Thyroid lesions were observed using hematoxylin and eosin (H and E) staining and serum TgAb, TPOAb, TSH, T3, and T4 levels were measured by enzyme-linked immunosorbent assay IL-35 levels were evaluated using real-time polymerase chain reaction (RT-PCR) and Th17/Treg balance in peripheral blood mononuclear cells (PBMCs) was determined by flow cytometry and RT-PCR. Changes in Wnt/ß-catenin signaling were evaluated using Western blot. Immunofluorescence staining and western blot were employed to examine NLRP3 inflammasome activation in the thyroid. YH minimized thyroid follicle injury and decreased concentrations of serum TgAb, TPOAb, TSH, T3, and T4 in EAT model. The mRNA of IL-35 was increased after YH treatment. YH also increased the percentage of Treg cells, and decreased Th17 proportion as well as Th17/Treg ratio in PBMCs. Meanwhile, the mRNA levels of Th17 related cytokines (RORγt, IL-17A, IL-21, and IL-22) were suppressed and Treg related cytokines (FoxP3, TGF-ß, and IL-10) were promoted in PBMCs. Additionally, the protein expressions of Wnt-1 and ß-catenin were unregulated after YH treatment. NLRP3 immunostaining signal and protein levels of IL-17, p-NF-κB, NLRP3, ASC, cleaved-Caspase-1, cleaved-IL-1ß, and IL-18 were downregulated in the thyroid after YH intervention. Overall, the present study demonstrated that YH alleviated autoimmune thyroiditis in rats by improving NLRP3 inflammasome and immune dysregulation.

5.
Dis Markers ; 2020: 5863178, 2020.
Article in English | MEDLINE | ID: mdl-32076462

ABSTRACT

AIM: This study was aimed at identifying the role of zinc finger protein 143 (ZNF143) in gastric cancer (GC) progression. METHODS: The impact of ZNF143 on the proliferation ability and apoptosis of GC cells was detected. The expression of ZNF143 and related targeted genes was determined using Western blot analysis. The reactive oxygen species (ROS) level of GC cells was examined using the ROS generation assay. The role of ZNF143 in the proliferation of GC cells in vivo was examined using tumor xenograft assay. RESULTS: The ectopic overexpression of ZNF143 promoted the proliferation of GC cells, while its knockdown reduced the effect in vitro. The downregulation of ZNF143 facilitated cell apoptosis. ZNF143 decreased the ROS level in GC cells, resulting in the reduction of cell apoptosis. Transfection with p53 reversed the antiapoptotic effect of ZNF143, while pifithrin-α, a specific inhibitor of p53, reduced the apoptosis in ZNF143-knockdown GC cells. However, p53 had no influence on the ROS level in GC cells. p53 played a key role in inhibiting ROS generation in GC cells, thereby inhibiting apoptosis. The transplanted tumor weight and volume were higher in the ZNF143-overexpressed group than in the ZNF143-knockdown group in vivo was examined using tumor xenograft assay. CONCLUSION: ZNF143, as a tumor oncogene, promoted the proliferation of GC cells both in vitro and in vivo, indicating that ZNF143 might function as a novel target for GC therapy.in vitro. The downregulation of ZNF143 facilitated cell apoptosis. ZNF143 decreased the ROS level in GC cells, resulting in the reduction of cell apoptosis. Transfection with p53 reversed the antiapoptotic effect of ZNF143, while pifithrin-in vivo was examined using tumor xenograft assay.


Subject(s)
Reactive Oxygen Species/metabolism , Stomach Neoplasms/pathology , Trans-Activators/genetics , Trans-Activators/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Transplantation , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Tumor Burden , Up-Regulation
6.
Biochem Biophys Res Commun ; 499(3): 531-537, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29596834

ABSTRACT

The development of novel anti-papillary thyroid carcinoma agents is urgent. AZD5153 is a novel and specific Bromodomain-containing protein 4 (BRD4) inhibitor. Here, we show that AZD5153 dose-dependently inhibited survival, proliferation and cell cycle progression in TPC-1 cells and primary human thyroid carcinoma cells. Yet, it was non-cytotoxic to the primary thyroid epithelial cells. AZD5153 induced caspase-3/-9 and apoptosis activation in TPC-1 cells and primary cancer cells. Its cytotoxicity in TPC-1 cells was significantly attenuated with co-treatment of the caspase inhibitors. BRD4 expression was elevated in TPC-1 and primary human thyroid carcinoma cells, but was low in the thyroid epithelial cells. BRD4-regulated proteins, including c-Myc, Bcl-2 and cyclin D1, were significantly downregulated following AZD5153 treatment in TPC-1 and primary cancer cells. In vivo, oral administration of AZD5153 at well-tolerated doses significantly inhibited TPC-1 xenograft growth in severe combined immunodeficient (SCID) mice. BRD4-dependent proteins, Myc, Bcl-2 and cyclin D1, were also downregulated in AZD5153-treated tumor tissues. Collectively, the results suggest that targeting BRD4 by AZD5153 inhibits human thyroid carcinoma cell growth in vitro and in vivo.


Subject(s)
Heterocyclic Compounds, 2-Ring/therapeutic use , Nuclear Proteins/antagonists & inhibitors , Piperazines/therapeutic use , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Transcription Factors/antagonists & inhibitors , Administration, Oral , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Heterocyclic Compounds, 2-Ring/administration & dosage , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Male , Mice, SCID , Middle Aged , Nuclear Proteins/metabolism , Piperazines/administration & dosage , Piperazines/pharmacology , Pyrazoles , Pyridazines , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...