Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 15(11): e202200144, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35852043

ABSTRACT

A variety of physical and chemical methods have been developed in research laboratories for the induction of stem cell differentiation. However, the use of exogenous chemicals and materials may limit their widespread utility in clinics. To develop a clean and precise induction approach with minimal invasion, we reported here that 1-second stimulation by a tightly focused femtosecond laser (fsL) (140 mW/µm2 , 200 fs) can modulate the signaling systems in human mesenchymal cells, such as intracellular calcium and reactive oxygen species. Upon stimulation on an automatic platform, hMSCs were found to express osteoblastic markers and form calcium-rich deposits. Moreover, tissue mineralization was observed when the fsL-illuminated hMSCs were ectopically transplanted into nude mice. Collectively, we described a novel and non-contact optical stimulation method for cell differentiation with high spatiotemporal resolution.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Mice , Humans , Osteogenesis/physiology , Calcium , Mice, Nude , Cell Differentiation , Lasers , Cells, Cultured
2.
Opt Lett ; 47(3): 457-460, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35103650

ABSTRACT

In this Letter, we present a compact broadband angular dispersion compensation method for digital micromirror devices (DMDs) and ultrashort pulse lasers, which effectively extends the conventional single-wavelength compensation design to a wide wavelength range of 300 nm. First, a parametric model was developed for the dispersion compensation unit, consisting of a transmission grating and a 4f telescope sub-unit, to guide the selection of components and parameter optimization for broadband applications. In the experiments, we designed a single slit-based metrology system to measure and quantify the compensated angular dispersion of a Ti:sapphire femtosecond laser with a pulse width of 75 fs. The results indicate that our method can reduce the angular dispersion to 0.04°, i.e., pulse widening less than 20 fs, over a wavelength range of 750-1050 nm. To demonstrate this, the DMD system was used as a multi-wavelength beam shaper to reconstruct a wavefront that contains the "CUHK" pattern and the results confirmed its ability to provide effective broadband angular dispersion compensation. This means the DMD can be used in different applications that employ a broadband light source, e.g., wavelength tunable femtosecond laser, attosecond laser, supercontinuum laser, and multi-color LED.

3.
Opt Express ; 28(20): 30187-30198, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114902

ABSTRACT

We present the modular design and characterization of a multi-modality video-rate two-photon excitation (TPE) microscope based on integrating a digital micromirror device (DMD), which functions as an ultrafast beam shaper and random-access scanner, with a pair of galvanometric scanners. The TPE microscope system realizes a suite of new imaging functionalities, including (1) multi-layer imaging with 3D programmable imaging planes, (2) DMD-based wavefront correction, and (3) multi-focus optical stimulation (up to 22.7 kHz) with simultaneous TPE imaging, all in real-time. We also report the detailed optomechanical design and software development that achieves high level system automation. To verify the performance of different microscope functions, we have devised and performed imaging experiments on Drosophila brain, mouse kidney and human stem cells. The results not only show improved imaging resolution and depths via the DMD-based adaptive optics, but also demonstrate fast multi-focus stimulation for the first time. With the new imaging capabilities, e.g., tools for optogenetics, the multi-modality TPE microscope may play a critical role in the applications pertinent to neuroscience and biophotonics.

4.
Opt Lett ; 45(9): 2656-2659, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356846

ABSTRACT

In this Letter, we present a new, to our knowledge, aberration-free 3D imaging technique based on digital micromirror device (DMD)-based two-photon microscopy and sensorless adaptive optics (AO), where 3D random-access scanning and modal wavefront correction are realized using a single DMD chip at 22.7 kHz. Specifically, the DMD is simultaneously used as a deformable mirror to modulate a distorted wavefront and a fast scanner to maneuver the laser focus in a 3D space by designed binary holograms. As such, aberration-free 3D imaging is realized by superposing the wavefront correction and 3D scanning holograms. Compared with conventional AO devices and methods, the DMD system can apply optimal wavefront correction information to different imaging regions or even individual pixels without compromising the scanning speed and device resolution. In the experiments, we first focus the laser through a diffuser and apply sensorless AO to retrieve a corrected focus. After that, the DMD performs 3D scanning on a Drosophila brain labeled with green fluorescent protein. The two-photon imaging results, where optimal wavefront correction information is applied to 3×3 separate regions, demonstrate significantly improved resolution and image quality. The new DMD-based imaging solution presents a compact, low-cost, and effective solution for aberration-free two-photon deep tissue imaging, which may find important applications in the field of biophotonics.


Subject(s)
Imaging, Three-Dimensional/methods , Microscopy, Fluorescence, Multiphoton/methods , Animals , Brain/diagnostic imaging , Drosophila melanogaster , Equipment Design , Imaging, Three-Dimensional/instrumentation , Lasers , Microscopy, Fluorescence, Multiphoton/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...