Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 935: 173102, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38729363

ABSTRACT

Although the exclusion effects of invertebrate decomposers on litter decomposition have been extensively studied in different experimental contexts, a thorough comparison of the exclusion effects of invertebrate decomposers with different body sizes on litter decomposition and its possible regulatory factors in terrestrial and aquatic ecosystems is still lacking. Here, through a meta-analysis of 1207 pairs of observations from 110 studies in terrestrial ecosystems and 473 pairs of observations from 60 studies in aquatic ecosystems, we found that invertebrate exclusion reduced litter decomposition rates by 36 % globally, 30 % in terrestrial ecosystems, and 44 % in aquatic ecosystems. At the global scale, the exclusion effects of macroinvertebrates and mesoinvertebrates on litter decomposition rates (reduced by 38 % and 36 %, respectively) were greater than those of the combination of macroinvertebrates and mesoinvertebrates (reduced by 30 %). In terrestrial and aquatic ecosystems, the effects of invertebrate exclusion on litter decomposition rates were mainly regulated by climate and initial litter quality, but the effects of invertebrate exclusion with different body sizes were regulated differently by climate, initial litter quality, and abiotic environmental variables. These findings will help us better understand the role of invertebrate decomposers in litter decomposition, especially for invertebrate decomposers with different body sizes, and underscore the need to incorporate invertebrate decomposers with different body sizes into dynamic models of litter decomposition to examine the potential effects and regulatory mechanisms of land-water-atmosphere carbon fluxes.


Subject(s)
Ecosystem , Invertebrates , Invertebrates/physiology , Animals , Climate , Biodegradation, Environmental , Aquatic Organisms
2.
Ecol Lett ; 26(6): 858-868, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36922741

ABSTRACT

Understanding the effects of diversity on ecosystem stability in the context of global change has become an important goal of recent ecological research. However, the effects of diversity at multiple scales and trophic levels on ecosystem stability across environmental gradients remain unclear. Here, we conducted a field survey of α-, ß-, and γ-diversity of plants and soil biota (bacteria, fungi, and nematodes) and estimated the temporal ecosystem stability of normalized difference vegetation index (NDVI) in 132 plots on the Mongolian Plateau. After climate and soil environmental variables were controlled for, both the α- and ß-diversity of plants and soil biota (mainly via nematodes) together with precipitation explained most variation in ecosystem stability. These findings evidence that the diversity of both soil biota and plants contributes to ecosystem stability. Model predictions of the future effects of global changes on terrestrial ecosystem stability will require field observations of diversity of both plants and soil biota.


Subject(s)
Ecosystem , Grassland , Soil , Biota , Plants
3.
Front Microbiol ; 13: 1063340, 2022.
Article in English | MEDLINE | ID: mdl-36569066

ABSTRACT

Although habitat loss and subdivision are considered main causes of sharp declines in biodiversity, there is still great uncertainty concerning the response of soil microbial biomass, diversity, and assemblage to habitat subdivision at the regional scale. Here, we selected 61 subtropical land-bridge islands (with small, medium, and large land areas) with a 50-year history of habitat subdivision and 9 adjacent mainland sites to investigate how habitat subdivision-induced unequal-sized patches and isolation affects biomass, diversity, and assemblages of soil bacteria and fungi. We found that the soil bacterial and fungal biomass on all unequal-sized islands were higher than that on mainland, while soil bacterial and fungal richness on the medium-sized islands were higher than that on mainland and other-sized islands. The habitat subdivision-induced increases in microbial biomass or richness were mainly associated with the changes in subdivision-specified habitat heterogeneities, especial for soil pH and soil moisture. Habitat subdivision reduced soil bacterial dissimilarity on medium-sized islands but did not affect soil fungal dissimilarity on islands of any size. The habitat fragment-induced changes in soil microbial dissimilarity were mainly associated with microbial richness. In summary, our results based on the responses of soil microbial communities from subtropical land-bridge islands are not consistent with the island biogeographical hypotheses but are to some extent consistent with the tradeoff between competition and dispersal. These findings indicate that the response of soil microbial communities to habitat subdivision differed by degree of subdivision and strongly related to habitat heterogeneity, and the distribution of microbial diversity among islands is also affected by tradeoff between competition and dispersal.

5.
Nat Ecol Evol ; 6(7): 900-909, 2022 07.
Article in English | MEDLINE | ID: mdl-35534625

ABSTRACT

Soil fungi are fundamental to plant productivity, yet their influence on the temporal stability of global terrestrial ecosystems, and their capacity to buffer plant productivity against extreme drought events, remain uncertain. Here we combined three independent global field surveys of soil fungi with a satellite-derived temporal assessment of plant productivity, and report that phylotype richness within particular fungal functional groups drives the stability of terrestrial ecosystems. The richness of fungal decomposers was consistently and positively associated with ecosystem stability worldwide, while the opposite pattern was found for the richness of fungal plant pathogens, particularly in grasslands. We further demonstrated that the richness of soil decomposers was consistently positively linked with higher resistance of plant productivity in response to extreme drought events, while that of fungal plant pathogens showed a general negative relationship with plant productivity resilience/resistance patterns. Together, our work provides evidence supporting the critical role of soil fungal diversity to secure stable plant production over time in global ecosystems, and to buffer against extreme climate events.


Subject(s)
Ecosystem , Soil , Droughts , Plants , Soil Microbiology
6.
Sci Total Environ ; 818: 151858, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34822882

ABSTRACT

The biotic drivers for the temporal stability of aboveground net productivity (ANPP) in natural ecosystems are well understood. However, knowledge gaps still exist regarding the relative importance of biotic and abiotic drivers regulating the temporal stability of aboveground productivity (ANPP), belowground net productivity (BNPP), and community net productivity (NPP) under global change and land use scenarios. Thus, in this study, we aimed to study the effects of increased water and nitrogen availability on temporal stability of ANPP, BNPP, and NPP and underlying mechanisms at sites with different long-term grazing histories in typical grasslands of the Inner Mongolia. The results suggested that resource addition affected the ANPP stability, but it did not change the stability of BNPP and NPP, which were all mediated by grazing histories. Most importantly, our study further indicated that species asynchrony, primarily contributed to the stability of ANPP and NPP by weakening their variation, and species asynchrony was regulated directly by plant diversity-related variables and indirectly by soil variables which were affected by resource addition and grazing history. In addition, an increase of ANPP stimulated under resource addition was a secondary contributor to ANPP stability. Specifically, the community-weighted mean of specific leaf area (CWM SLA) regulated the ANPP stability indirectly by promoting species asynchrony, while functional diversity of leaf area and SLA both directly controlled the BNPP stability. Findings of our study demonstrate that different mechanisms drove temporal stability of above- and belowground productivity. Our study has important implications for maintaining the temporal stability of community productivity and for establishing sustainable management practices of semi-arid grasslands under global change and land use scenarios.


Subject(s)
Ecosystem , Grassland , China , Plant Leaves , Poaceae , Soil
7.
Glob Chang Biol ; 26(8): 4626-4637, 2020 08.
Article in English | MEDLINE | ID: mdl-32438518

ABSTRACT

Soil nitrogen (N) and phosphorus (P) contents, and soil acidification have greatly increased in grassland ecosystems due to increased industrial and agricultural activities. As major environmental and economic concerns worldwide, nutrient enrichment and soil acidification can lead to substantial changes in the diversity and structure of plant and soil communities. Although the separate effects of N and P enrichment on soil food webs have been assessed across different ecosystems, the combined effects of N and P enrichment on multiple trophic levels in soil food webs have not been studied in semiarid grasslands experiencing soil acidification. Here we conducted a short-term N and P enrichment experiment in non-acidified and acidified soil in a semiarid grassland on the Mongolian Plateau. We found that net primary productivity was not affected by N or P enrichment alone in either non-acidified or acidified soil, but was increased by combined N and P enrichment in both non-acidified and acidified soil. Nutrient enrichment decreased the biomass of most microbial groups in non-acidified soil (the decrease tended to be greatest with combined N and P enrichment) but not in acidified soil, and did not affect most soil nematode variables in non-acidified or acidified soil. Nutrient enrichment also changed plant and microbial community structure in non-acidified but not in acidified soil, and had no effect on nematode community structure in non-acidified or acidified soil. These results indicate that the responses to short-term nutrient enrichment were weaker for higher trophic groups (nematodes) than for lower trophic groups (microorganisms) and primary producers (plants). The findings increase our understanding of the effects of nutrient enrichment on multiple trophic levels of soil food webs, and highlight that soil acidification, as an anthropogenic stressor, reduced the responses of plants and soil food webs to nutrient enrichment and weakened plant-soil interactions.


Subject(s)
Grassland , Soil , Animals , Biomass , Biota , Ecosystem , Hydrogen-Ion Concentration , Nitrogen , Nutrients
8.
Glob Chang Biol ; 26(5): 3015-3027, 2020 05.
Article in English | MEDLINE | ID: mdl-32107822

ABSTRACT

Global warming has greatly altered winter snowfall patterns, and there is a trend towards increasing winter snow in semi-arid regions in China. Winter snowfall is an important source of water during early spring in these water-limited ecosystems, and it can also affect nutrient supply. However, we know little about how changes in winter snowfall will affect ecosystem productivity and plant community structure during the growing season. Here, we conducted a 5-year winter snow manipulation experiment in a temperate grassland in Inner Mongolia. We measured ecosystem carbon flux from 2014 to 2018 and plant biomass and species composition from 2015 to 2018. We found that soil moisture increased under deepened winter snow in early growing season, particularly in deeper soil layers. Deepened snow increased the net ecosystem exchange of CO2 (NEE) and reduced intra- and inter-annual variation in NEE. Deepened snow did not affect aboveground plant biomass (AGB) but significantly increased root biomass. This suggested that the enhanced NEE was allocated to the belowground, which improved water acquisition and thus contributed to greater stability in NEE in deep-snow plots. Interestingly, the AGB of grasses in the control plots declined over time, resulting in a shift towards a forb-dominated system. Similar declines in grass AGB were also observed at three other locations in the region over the same time frame and are attributed to 4 years of below-average precipitation during the growing season. By contrast, grass AGB was stabilized under deepened winter snow and plant community composition remained unchanged. Hence, our study demonstrates that increased winter snowfall may stabilize arid grassland systems by reducing resource competition, promoting coexistence between plant functional groups, which ultimately mitigates the impacts of chronic drought during the growing season.


Subject(s)
Ecosystem , Snow , China , Grassland , Seasons
9.
Glob Chang Biol ; 26(2): 960-970, 2020 02.
Article in English | MEDLINE | ID: mdl-31529564

ABSTRACT

Livestock grazing often alters aboveground and belowground communities of grasslands and their mediated carbon (C) and nitrogen (N) cycling processes at the local scale. Yet, few have examined whether grazing-induced changes in soil food webs and their ecosystem functions can be extrapolated to a regional scale. We investigated how large herbivore grazing affects soil micro-food webs (microbes and nematodes) and ecosystem functions (soil C and N mineralization), using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results showed that grazing not only affected plant variables (e.g., biomass and C and N concentrations), but also altered soil substrates (e.g., C and N contents) and soil environment (e.g., soil pH and bulk density). Grazing had strong bottom-up effects on soil micro-food webs, leading to more pronounced decreases at higher trophic levels (nematodes) than at lower trophic levels (microbes). Structural equation modeling showed that changes in plant biomass and soil environment dominated grazing effects on microbes, while nematodes were mainly influenced by changes in plant biomass and soil C and N contents; the grazing effects, however, differed greatly among functional groups in the soil micro-food webs. Grazing reduced soil C and N mineralization rates via changes in plant biomass, soil C and N contents, and soil environment across grasslands on the Mongolian Plateau. Spearman's rank correlation analysis also showed that grazing reduced the correlations between functional groups in soil micro-food webs and then weakened the correlation between soil micro-food webs and soil C and N mineralization. These results suggest that changes in soil micro-food webs resulting from livestock grazing are poor predictors of soil C and N processes at regional scale, and that the relationships between soil food webs and ecosystem functions depend on spatial scales and land-use changes.


Subject(s)
Ecosystem , Soil , Animals , Biomass , Food Chain , Grassland , Herbivory
10.
Nat Commun ; 9(1): 3480, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30154479

ABSTRACT

The means through which microbes and plants contribute to soil organic carbon (SOC) accumulation remain elusive due to challenges in disentangling the complex components of SOC. Here we use amino sugars and lignin phenols as tracers for microbial necromass and plant lignin components, respectively, and investigate their distribution in the surface soils across Mongolian grasslands in comparison with published data for other grassland soils of the world. While lignin phenols decrease, amino sugars increase with SOC contents in all examined grassland soils, providing continental-scale evidence for the key role of microbial necromass in SOC accumulation. Moreover, in contrast to clay's control on amino sugar accumulation in fine-textured soils, aridity plays a central role in amino sugar accrual and lignin decomposition in the coarse-textured Mongolian soils. Hence, aridity shifts may have differential impacts on microbial-mediated SOC accumulation in grassland soils of varied textures.


Subject(s)
Grassland , Lignin/analysis , Lignin/metabolism , Amino Sugars/analysis , Amino Sugars/metabolism , Carbon Sequestration , Soil , Soil Microbiology
11.
Ecol Lett ; 21(8): 1162-1173, 2018 08.
Article in English | MEDLINE | ID: mdl-29781214

ABSTRACT

Impacts of reactive nitrogen (N) inputs on ecosystem carbon (C) dynamics are highly variable, and the underlying mechanisms remain unclear. Here, we proposed a new conceptual framework that integrates plant, microbial and geochemical mechanisms to reconcile diverse and contrasting impacts of N on soil C. This framework was tested using long-term N enrichment and acid addition experiments in a Mongolian steppe grassland. Distinct mechanisms could explain effects of N on particulate and mineral-associated soil C pools, potentially explaining discrepancies among previous N addition studies. While plant production predominated particulate C changes, N-induced soil acidification strongly affected mineral-associated C through decreased microbial growth and pH-sensitive associations between iron and aluminium minerals and C. Our findings suggest that effects of N-induced acidification on microbial respiration and geochemical properties should be included in Earth system models that predict ecosystem C budgets under future N deposition/input scenarios.


Subject(s)
Carbon , Nitrogen , Plants , Soil , Ecosystem , Soil Microbiology
12.
Proc Natl Acad Sci U S A ; 115(16): 4027-4032, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29666315

ABSTRACT

Despite evidence from experimental grasslands that plant diversity increases biomass production and soil organic carbon (SOC) storage, it remains unclear whether this is true in natural ecosystems, especially under climatic variations and human disturbances. Based on field observations from 6,098 forest, shrubland, and grassland sites across China and predictions from an integrative model combining multiple theories, we systematically examined the direct effects of climate, soils, and human impacts on SOC storage versus the indirect effects mediated by species richness (SR), aboveground net primary productivity (ANPP), and belowground biomass (BB). We found that favorable climates (high temperature and precipitation) had a consistent negative effect on SOC storage in forests and shrublands, but not in grasslands. Climate favorability, particularly high precipitation, was associated with both higher SR and higher BB, which had consistent positive effects on SOC storage, thus offsetting the direct negative effect of favorable climate on SOC. The indirect effects of climate on SOC storage depended on the relationships of SR with ANPP and BB, which were consistently positive in all biome types. In addition, human disturbance and soil pH had both direct and indirect effects on SOC storage, with the indirect effects mediated by changes in SR, ANPP, and BB. High soil pH had a consistently negative effect on SOC storage. Our findings have important implications for improving global carbon cycling models and ecosystem management: Maintaining high levels of diversity can enhance soil carbon sequestration and help sustain the benefits of plant diversity and productivity.


Subject(s)
Biodiversity , Carbon Sequestration , Carbon/analysis , Ecosystem , Plants/metabolism , Soil/chemistry , Biomass , China , Conservation of Natural Resources , Datasets as Topic , Farms , Forests , Grassland , Human Activities , Humans , Hydrogen-Ion Concentration , Nitrogen/analysis , Plant Dispersal , Plants/chemistry , Plants/classification , Rain , Temperature
13.
Proc Natl Acad Sci U S A ; 115(16): 4033-4038, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29666316

ABSTRACT

Plant nitrogen (N) and phosphorus (P) content regulate productivity and carbon (C) sequestration in terrestrial ecosystems. Estimates of the allocation of N and P content in plant tissues and the relationship between nutrient content and photosynthetic capacity are critical to predicting future ecosystem C sequestration under global change. In this study, by investigating the nutrient concentrations of plant leaves, stems, and roots across China's terrestrial biomes, we document large-scale patterns of community-level concentrations of C, N, and P. We also examine the possible correlation between nutrient content and plant production as indicated by vegetation gross primary productivity (GPP). The nationally averaged community concentrations of C, N, and P were 436.8, 14.14, and 1.11 mg·g-1 for leaves; 448.3, 3.04 and 0.31 mg·g-1 for stems; and 418.2, 4.85, and 0.47 mg·g-1 for roots, respectively. The nationally averaged leaf N and P productivity was 249.5 g C GPP·g-1 N·y-1 and 3,157.9 g C GPP·g-1 P·y-1, respectively. The N and P concentrations in stems and roots were generally more sensitive to the abiotic environment than those in leaves. There were strong power-law relationships between N (or P) content in different tissues for all biomes, which were closely coupled with vegetation GPP. These findings not only provide key parameters to develop empirical models to scale the responses of plants to global change from a single tissue to the whole community but also offer large-scale evidence of biome-dependent regulation of C sequestration by nutrients.


Subject(s)
Carbon Sequestration , Carbon/analysis , Ecosystem , Nitrogen/analysis , Phosphorus/analysis , Plants/chemistry , Atmosphere/chemistry , Biomass , China , Climate , Farms , Forests , Grassland , Humans , Organ Specificity , Plant Dispersal , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Stems/chemistry , Soil/chemistry , Species Specificity
14.
Sci Rep ; 7(1): 7276, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28779090

ABSTRACT

At the regional scale, although environmental factors are known to shape the distributions of belowground communities in terrestrial ecosystems, these environmental factors account for relatively low percentages of the variation in belowground communities. More of this variation might be explained by considering ecosystem stable isotopic values, which can provide insight into environmental conditions. Here, we investigated ecosystem (plant and soil) δ13C and δ15N values and belowground communities (microbes and nematodes) as well as environmental factors (climates, soils, and plants) across the Mongolian Plateau. The regression analyses showed that plant isotopic values were more closely associated with belowground communities than soil isotopic values, while ecosystem δ13C values were more closely associated with the belowground communities than ecosystem δ15N values. We also found isotopic values were more closely associated with nematode communities than microbial communities. Variation partioning analyses indicated that environmental variables together explained 16-45% of total variation in belowground communities. After isotopic variables were added as predictors to the variation partition analyses, the explanation of the variance was improved by14-24% for microbial communities and was improved by 23-44% for nematode communities. These findings indicate that isotopic values could be used to predict the properties of belowground communities at a regional scale.


Subject(s)
Carbon Isotopes/analysis , Ecosystem , Nitrogen Isotopes/analysis , Soil Microbiology , Soil/parasitology , Environment , Geography
15.
Sci Rep ; 7(1): 40, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28232738

ABSTRACT

Grasslands worldwide are suffering from overgrazing, which greatly alters plant community structure and ecosystem functioning. However, the general effects of grazing on community structure and ecosystem function at spatial and temporal scales has rarely been examined synchronously in the same grassland. Here, during 2011-2013, we investigated community structure (cover, height, and species richness) and aboveground biomass (AGB) using 250 paired field sites (grazed vs. fenced) across three vegetation types (meadow, typical, and desert steppes) on the Inner Mongolian Plateau. Grazing, vegetation type, and year all had significant effects on cover, height, species richness, and AGB, although the primary factor influencing variations in these variables was vegetation type. Spatially, grazing significantly reduced the measured variables in meadow and typical steppes, whereas no changes were observed in desert steppe. Temporally, both linear and quadratic relationships were detected between growing season precipitation and cover, height, richness, or AGB, although specific relationships varied among observation years and grazing treatments. In each vegetation type, the observed community properties were significantly correlated with each other, and the shape of the relationship was unaffected by grazing treatment. These findings indicate that vegetation type is the most important factor to be considered in grazing management for this semi-arid grassland.


Subject(s)
Ecosystem , Grassland , Herbivory , Animals , Biomass , China , Climate , Livestock , Magnoliopsida , Spatio-Temporal Analysis
16.
Sci Rep ; 6: 27066, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27243577

ABSTRACT

The patterns and drivers of soil microbial communities in forest plantations remain inadequate although they have been extensively studied in natural forest and grassland ecosystems. In this study, using data from 12 subtropical plantation sites, we found that the overstory tree biomass and tree cover increased with increasing plantation age. However, there was a decline in the aboveground biomass and species richness of the understory herbs as plantation age increased. Biomass of all microbial community groups (i.e. fungi, bacteria, arbuscular mycorrhizal fungi, and actinomycete) decreased with increasing plantation age; however, the biomass ratio of fungi to bacteria did not change with increasing plantation age. Variation in most microbial community groups was mainly explained by the understory herb (i.e. herb biomass and herb species richness) and overstory trees (i.e. tree biomass and tree cover), while soils (i.e. soil moisture, soil organic carbon, and soil pH) explained a relative low percentage of the variation. Our results demonstrate that the understory herb layer exerts strong controls on soil microbial community in subtropical plantations. These findings suggest that maintenance of plantation health may need to consider the management of understory herb in order to increase the potential of plantation ecosystems as fast-response carbon sinks.


Subject(s)
Carbon Sequestration/physiology , Microbial Consortia/physiology , Poaceae/physiology , Soil Microbiology , Trees/physiology , Actinobacteria/classification , Actinobacteria/growth & development , Actinobacteria/metabolism , Bacteria/classification , Bacteria/growth & development , Bacteria/metabolism , Ecosystem , Forests , Fungi/classification , Fungi/growth & development , Fungi/metabolism , Mycorrhizae/classification , Mycorrhizae/growth & development , Mycorrhizae/metabolism , Soil/chemistry
17.
Sci Rep ; 4: 6262, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25179343

ABSTRACT

Reforested plantations have substantial effects on terrestrial carbon cycling due to their large coverage area. Although understory plants are important components of reforested plantations, their effects on ecosystem carbon dynamics remain unclear. This study was designed to investigate the effects of vegetation removal/understory removal and tree girdling on soil respiration and ecosystem carbon dynamics in Eucalyptus plantations of South China with contrasting ages (2 and 24 years old). We conducted a field manipulation experiment from 2008 to 2009. Understory removal reduced soil respiration in both plantations, whereas tree girdling decreased soil respiration only in the 2-year-old plantations. The net ecosystem production was approximately three times greater in the 2-year-old plantations (13.4 t C ha(-1) yr(-1)) than in the 24-year-old plantations (4.2 t C h(-1) yr(-1)). The biomass increase of understory plants was 12.6 t ha(-1) yr(-1) in the 2-year-old plantations and 2.9 t ha(-1) yr(-1) in the 24-year-old plantations, accounting for 33.9% nd 14.1% of the net primary production, respectively. Our findings confirm the ecological importance of understory plants in subtropical plantations based on the 2 years of data. These results also indicate that Eucalyptus plantations in China may be an important carbon sink due to the large plantation area.


Subject(s)
Carbon/metabolism , Eucalyptus/metabolism , Eucalyptus/physiology , Biomass , Carbon Cycle/physiology , Carbon Sequestration/physiology , China , Ecosystem , Soil
18.
Ecotoxicology ; 21(8): 2132-42, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22732942

ABSTRACT

Both soil nematodes and microorganisms have been shown to be sensitive bioindicators of soil recovery in metal-contaminated habitats; however, the underlying processes are poorly understood. We investigated the relationship among soil microbial community composition, nematode community structure and soil aluminum (Al) content in different vegetated aluminum-rich ecosystems. Our results demonstrated that there were greater soil bacterial, fungal and arbuscular mycorrhizal fungal biomass in Syzygium cumini plantation, greater abundance of soil nematodes in Acacia auriculiformis plantation, and greater abundance of soil predatory and herbivorous nematodes in Schima wallichii plantation. The concentration of water-soluble Al was normally greater in vegetated than non-vegetated soil. The residual Al and total Al concentrations showed a significant decrease after planting S. cumini plantation onto the shale dump. Acid extractable, reducible and oxidisable Al concentrations were greater in S. wallichii plantation. Stepwise linear regression analysis suggests the concentrations of water-soluble Al and total Al content explain the most variance associated with nematode assembly; whereas, the abundance of early-successional nematode taxa was explained mostly by soil moisture, soil organic C and total N rather than the concentrations of different forms of Al. In contrast, no significant main effects of either Al or soil physico-chemical characteristics on soil microbial biomass were observed. Our study suggests that vegetation was the primary driver on soil nematodes and microorganisms and it also could regulate the sensitivity of bio-indicator role mainly through the alteration of soil Al and physico-chemical characteristics, and S. cumini is effective for amending the Al contaminated soils.


Subject(s)
Aluminum/toxicity , Bacteria/drug effects , Industrial Waste/adverse effects , Nematoda/drug effects , Oil and Gas Fields , Soil Pollutants/toxicity , Aluminum/analysis , Animals , Biota , China , Chromatography, Gas , Regression Analysis , Soil Microbiology , Soil Pollutants/analysis , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...