Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Anal Methods ; 13(46): 5617-5627, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34762078

ABSTRACT

A new electrochemical sensor has been constructed for ultra-sensitive detection of lead ions (Pb2+) by square wave anodic stripping voltammetry (SWASV), based on the copper sulfide/graphitic carbon nitride nanocomposite modified glassy carbon electrode (CuS/g-C3N4/GCE). First, spherical CuS nanoparticles with good electrical conductivity were anchored on layered g-C3N4 with high coordination activity, affording an excellent electrode modifier CuS/g-C3N4 nanocomposite. Then, the performance of the CuS/g-C3N4/GCE and its electrochemical response to Pb2+ were thoroughly studied, and the sensing mechanism was investigated. On the one hand, the CuS/g-C3N4 nanocomposite has greatly improved the electron transportation and electrode performance through functional complementarity - CuS endows g-C3N4 with a good electrical conductivity and a large active specific surface area, while g-C3N4 endows CuS with high dispersibility and strong adsorption. On the other hand, the CuS/g-C3N4 modifier has effectively promoted the deposition of trace Pb2+ from the solution onto the electrode surface by means of synergistic enrichment (crucial for amplification of detection signals) - g-C3N4 can coordinate with Pb2+ by its large number of conjugated triazine heterocyclic rings in its molecular framework, while CuS can adsorb Pb2+ due to its inherent size effect of nanomaterials. The proposed sensor can efficiently detect Pb2+ in the concentration range of 0.050-5.000 µM with a limit of detection (LOD) as low as 4.00 nM, and can be well applied for the detection of trace Pb2+ in actual tea samples.


Subject(s)
Lead , Nanoparticles , Copper/chemistry , Electrodes
3.
Sensors (Basel) ; 19(24)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842415

ABSTRACT

In the present work, a novel electrochemical sensor was developed for the detection of trace cadmium with high sensitivity and selectivity in an easy and eco-friendly way. Firstly, a glassy carbon electrode (GCE) was modified with nontoxic sodium carboxymethyl cellulose (CMC) by a simple drop-casting method, which was applied to detect cadmium by differential pulse anodic stripping voltammetry (DPASV) in a solution containing both target cadmium and eco-friendly bismuth ions, based on a quick electro-codeposition of these two metal ions on the surface of the modified electrode (CMC-GCE). Investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR), both CMC (with good film-forming ability) and bismuth (with well-defined stripping signal) were found to be well complexed with target cadmium, leading to vital signal amplification for cadmium detection at a sub-nanomolar level. Under the optimal conditions, the proposed sensor exhibited a good linear stripping signal response to cadmium (Ⅱ) ion, in a concentration range of 0.001 µmol/L-1 µmol/L with a limit of detection of 0.75 nmol/L (S/N = 3). Meanwhile, the results demonstrate that this novel electrochemical sensor has excellent sensitivity and reproducibility, which can be used as a promising detection technique for testing natural samples such as tap water.

4.
Molecules ; 23(10)2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30340409

ABSTRACT

Human epidermal growth factor receptor 2 (HER2) is a key tumor marker for several common and deadly cancers. It is of great importance to develop efficient detection methods for its over-expression. In this work, an electrochemical impedance spectroscopy (EIS) method adjustable by anionic porphyrin for HER2 gene detection has been proposed, based on the impedance difference between multi-walled carbon nanotubes (MWCNTs) and DNA. The interesting finding herein is that with the addition of anionic porphyrin, i.e., meso-tetra(4-sulfophenyl)-porphyrin (TSPP), the impedance value obtained at a glass carbon electrode (GCE) modified with MWCNTs and a single stranded DNA (ssDNA), the probe DNA that might be assembled tightly onto MWCNTs through π-π stacking interaction, gets a slight decrease; however, the impedance value from a GCE modified with MWCNTs and a double stranded DNA (dsDNA), the hybrid of the probe DNA with a target DNA, which might be assembled loosely onto MWCNTs for the screening effect of phosphate backbones in dsDNA, gets an obvious decrease. The reason may be that on the one hand, being rich in negative sulfonate groups, TSPP will try to push DNA far away from CNTs surface due to its strong electrostatic repulsion towards DNA; on the other hand, rich in planar phenyl or pyrrole rings, TSPP will compete with DNA for the surface of CNTs since it can also be assembled onto CNTs through conjugative interactions. In this way, the "loosely assembled" dsDNA will be repelled by this anionic porphyrin and released off CNTs surface much more than the "tightly assembled" ssDNA, leading to a bigger difference in the impedance value between dsDNA and ssDNA. Thus, through the amplification effect of TSPP on the impedance difference, the perfectly matched target DNA could be easily determined by EIS without any label. Under the optimized experimental conditions, this electrochemical sensor shows an excellent linear response to target DNA in a concentration range of 2.0 × 10-11⁻2.0 × 10-6 M with a limit of detection (LOD) of 6.34 × 10-11 M (S/N = 3). This abnormally sensitive electrochemical sensing performance resulting from anionic porphyrin for DNA sequences specific to HER2 gene will offer considerable promise for tumor diagnosis and treatment.


Subject(s)
Biosensing Techniques , DNA, Single-Stranded/isolation & purification , Porphyrins/pharmacology , Receptor, ErbB-2/isolation & purification , Anions/chemistry , Anions/pharmacology , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Dielectric Spectroscopy , Humans , Limit of Detection , Nanotubes, Carbon/chemistry , Neoplasms/diagnosis , Neoplasms/genetics , Porphyrins/chemistry , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/genetics
5.
Molecules ; 23(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304784

ABSTRACT

Catalytic degradation of organic pollutants by nanomaterials is an effective way for environmental remediation. The Fenton reaction involving H2O2 oxidation catalysed by Fe3+ is an advisable way for wastewater degradation. Herein, Fe3O4/SiO2 core-shell nanoparticles were prepared as catalyst by coprecipitation and sol-gel methods, and this catalyst is used for degradation of fuchsin in wastewater by H2O2. The Fenton reaction between H2O2 and Fe3O4 is proposed to explain the catalytic performance. The coating of SiO2 on Fe3O4 nanoparticles could dramatically stabilize the Fe3O4 in aqueous solution and prevent their oxidation. More importantly, the magnetic property of Fe3O4 nanoparticles endows them with good recyclability. Thus, due to the outstanding catalytic results, almost 100% removal degradation was achieved within 5 min over a wide pH value range at room temperature, which is better than that without catalysts. Temperature is a positive factor for improving the degradation rate, but room temperature is selected as the best temperature for economic and energy savings reasons, because more than 98% of fuchsins can still be degraded at room temperature. Moreover, these Fe3O4/SiO2 core-shell nanoparticles exhibit excellent magnetic recyclability and stable properties after repeated utilization. Therefore, these as-presented Fe3O4/SiO2 core-shell nanoparticles with low-cost and high performance are expected to be applied in practical industry wastewater degradation.


Subject(s)
Environmental Restoration and Remediation , Magnetite Nanoparticles/chemistry , Rosaniline Dyes/chemistry , Silicon Dioxide/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Magnetite Nanoparticles/ultrastructure , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
6.
Molecules ; 23(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304828

ABSTRACT

To ensure food quality and safety, developing cost-effective, rapid and precision analytical techniques for quantitative detection of nitrite is highly desirable. Herein, a novel electrochemical sensor based on the sodium cellulose sulfate/poly (dimethyl diallyl ammonium chloride) (NaCS/PDMDAAC) composite film modified glass carbon electrode (NaCS/PDMDAAC/GCE) was proposed toward the detection of nitrite at sub-micromolar level, aiming to make full use of the inherent properties of individual component (biocompatible, low cost, good electrical conductivity for PDMDAAC; non-toxic, abundant raw materials, good film forming ability for NaCS) and synergistic enhancement effect. The NaCS/PDMDAAC/GCE was fabricated by a simple drop-casting method. Electrochemical behaviors of nitrite at NaCS/PDMDAAC/GCE were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimum conditions, the NaCS/PDMDAAC/GCE exhibits a wide linear response region of 4.0 × 10-8 mol·L-1~1.5 × 10-4 mol·L-1 and a low detection 1imit of 43 nmol·L-1. The NaCS/PDMDAAC shows a synergetic enhancement effect toward the oxidation of nitrite, and the sensing performance is much better than the previous reports. Moreover, the NaCS/PDMDAAC also shows good stability and reproducibility. The NaCS/PDMDAAC/GCE was successfully applied to the determination of nitrite in ham sausage with satisfactory results.


Subject(s)
Carbon/chemistry , Electrochemical Techniques , Electrodes , Nitrites/chemistry , Polyelectrolytes/chemistry , Electrochemistry/methods , Hydrogen-Ion Concentration , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...