Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 436(11): 168576, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641239

ABSTRACT

Prions, the misfolding form of prion proteins, are contagious proteinaceous macromolecules. Recent studies have shown that infectious prion fibrils formed in the brain and non-infectious fibrils formed from recombinant prion protein in a partially denaturing condition have distinct structures. The amyloid core of the in vitro-prepared non-infectious fibrils starts at about residue 160, while that of infectious prion fibrils formed in the brain involves a longer sequence (residues ∼90-230) of structural conversion. The C-terminal truncated prion protein PrP(23-144) can form infectious fibrils under certain conditions and cause disease in animals. In this study, we used cryogenic electron microscopy (cryo-EM) to resolve the structure of hamster sHaPrP(23-144) fibrils prepared at pH 3.7. This 2.88 Å cryo-EM structure has an amyloid core covering residues 94-144. It comprises two protofilaments, each containing five ß-strands arranged as a long hairpin plus an N-terminal ß-strand. This N-terminal ß-strand resides in a positively charged cluster region (named PCC2; sequence 96-111), which interacts with the turn region of the opposite protofilaments' hairpin to stabilize the fibril structure. Interestingly, this sHaPrP(23-144) fibril structure differs from a recently reported structure formed by the human or mouse counterpart at pH 6.5. Moreover, sHaPrP(23-144) fibrils have many structural features in common with infectious prions. Whether this structure is infectious remains to be determined. More importantly, the sHaPrP(23-144) structure is different from the sHaPrP(108-144) fibrils prepared in the same fibrillization buffer, indicating that the N-terminal disordered region, possibly the positively charged cluster, influences the misfolding pathway of the prion protein.


Subject(s)
Amyloid , Prion Proteins , Protein Folding , Animals , Cricetinae , Amyloid/chemistry , Cryoelectron Microscopy/methods , Models, Molecular , Prion Proteins/chemistry , Prion Proteins/genetics , Protein Conformation
2.
Nat Commun ; 14(1): 5464, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673860

ABSTRACT

The abuse of antibiotics has led to the emergence of multidrug-resistant microbial pathogens, presenting a pressing challenge in global healthcare. Membrane-disrupting antimicrobial peptides (AMPs) combat so-called superbugs via mechanisms different than conventional antibiotics and have good application prospects in medicine, agriculture, and the food industry. However, the mechanism-of-action of AMPs has not been fully characterized at the cellular level due to a lack of high-resolution imaging technologies that can capture cellular-membrane disruption events in the hydrated state. Previously, we reported PepD2M, a de novo-designed AMP with potent and wide-spectrum bactericidal and fungicidal activity. In this study, we use cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM) to directly visualize the pepD2M-induced disruption of the outer and inner membranes of the Gram-negative bacterium Escherichia coli, and compared with a well-known pore-forming peptide, melittin. Our high-resolution cryo-ET images reveal how pepD2M disrupts the E. coli membrane using a carpet/detergent-like mechanism. Our studies reveal the direct membrane-disrupting consequence of AMPs on the bacterial membrane by cryo-ET, and this information provides critical insights into the mechanisms of this class of antimicrobial agents.


Subject(s)
Antimicrobial Peptides , Electron Microscope Tomography , Escherichia coli , Cell Physiological Phenomena , Anti-Bacterial Agents/pharmacology
3.
PNAS Nexus ; 2(5): pgad162, 2023 May.
Article in English | MEDLINE | ID: mdl-37265546

ABSTRACT

Nearly 95% of Alzheimer's disease (AD) occurs sporadically without genetic linkage. Aging, hypertension, high cholesterol content, and diabetes are known nongenomic risk factors of AD. Aggregation of Aß peptides is an initial event of AD pathogenesis. Aß peptides are catabolic products of a type I membrane protein called amyloid precursor protein (APP). Aß40 is the major product, whereas the 2-residue-longer version, Aß42, induces amyloid plaque formation in the AD brain. Since cholesterol content is one risk factor for sporadic AD, we aimed to explore whether cholesterol in the membrane affects the structure of the APP transmembrane region, thereby modulating the γ-secretase cutting behavior. Here, we synthesized several peptides containing the APP transmembrane region (sequence 693-726, corresponding to the Aß22-55 sequence) with one or two Cys mutations for spin labeling. We performed three electron spin resonance experiments to examine the structural changes of the peptides in liposomes composed of dioleoyl phosphatidylcholine and different cholesterol content. Our results show that cholesterol increases membrane thickness by 10% and peptide length accordingly. We identified that the di-glycine region of Aß36-40 (sequence VGGVV) exhibits the most profound change in response to cholesterol compared with other segments, explaining how the presence of cholesterol affects the γ-secretase cutting site. This study provides spectroscopic evidence showing how cholesterol modulates the structure of the APP transmembrane region in a lipid bilayer.

4.
J Am Chem Soc ; 144(30): 13888-13894, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35857020

ABSTRACT

Fibrils of the hamster prion peptide (sHaPrP, sequence 108-144) were prepared in an acidic solution, and their structure was solved by cryogenic electron microscopy with a resolution of 2.23 Å based on the gold-standard Fourier shell correlation (FSC) curve. The fibril has a novel architecture that has never been found in other amyloid fibrils. Each fibril is assembled by four protofilaments (PFs) and has an ordered water channel in the center. Each protofilament contains three ß-strands (125-130, 133-135, and 138-141) arranged in an "R"-shaped construct. The structural data indicate that these three ß-strand segments are the most amyloidogenic region of the prion peptide/protein and might be the site of nucleation during fibrillization under conditions without denaturants.


Subject(s)
Aquaporins , Prions , Amyloid/chemistry , Animals , Cricetinae , Cryoelectron Microscopy , Peptides , Prion Proteins , Prions/chemistry
5.
Protein Sci ; 31(6): e4326, 2022 06.
Article in English | MEDLINE | ID: mdl-35634767

ABSTRACT

Prion diseases are transmissible fatal neurodegenerative disorders spreading between humans and other mammals. The pathogenic agent, prion, is a protease-resistant, ß-sheet-rich protein aggregate, converted from a membrane protein called PrPC . PrPSc is the misfolded form of PrPC and undergoes self-propagation to form the infectious amyloids. Since the key hallmark of prion disease is amyloid formation, identifying and studying which segments are involved in the amyloid core can provide molecular details about prion diseases. It has been known that the prion protein could also form non-infectious fibrils in the presence of denaturants. In this study, we employed a combination of site-directed nitroxide spin-labeling, fibril seeding, and electron spin resonance (ESR) spectroscopy to identify the structure of the in vitro-prepared full-length mouse prion fibrils. It is shown that in the in vitro amyloidogenesis, the formation of the amyloid core is linked to an α-to-ß structural transformation involving the segment 160-224, which contains strand 2, helix 2, and helix 3. This method is particularly suitable for examining the hetero-seeded amyloid fibril structure, as the unlabeled seeds are invisible by ESR spectroscopy. It can be applied to study the structures of different strains of infectious prions or other amyloid fibrils in the future.


Subject(s)
Prion Diseases , Prions , Amyloid/chemistry , Amyloidogenic Proteins , Animals , Electron Spin Resonance Spectroscopy/methods , Mammals , Mice , Prion Proteins/metabolism , Prions/metabolism
6.
IUBMB Life ; 74(8): 780-793, 2022 08.
Article in English | MEDLINE | ID: mdl-34288372

ABSTRACT

Prion protein is composed of a structure-unsolved N-terminal domain and a globular C-terminal domain. Under limited trypsin digestion, mouse recombinant prion protein can be cleaved into two parts at residue Lys105. Here, we termed these two fragments as the N-domain (sequence 23-105) and the C-domain (sequence 106-230). In this study, the structural properties of the N-domain, the C-domain, and the full-length protein were explored using small-angle X-ray scattering, analytical ultracentrifugation, circular dichroism spectroscopy, and the 8-anilino-1-naphthalenesulfonic acid binding assay. The conformation and size of the prion protein were found to change sensitively under the solvent conditions. The positive residues in the sequence 23-99 of the N-domain were found to be responsible for the enhanced flexibility with the salt concentration reduced below 5 mM. The C-domain containing a hydrophobic patch tends to unfold and aggregate during a salt-induced structural collapse. The N-domain collapsed together with the C-domain at pH 5.2, whereas it collapsed independently at pH 4.2. The positively charged cluster (sequence 100-105) in the N-domain contributed to protecting the exposed hydrophobic surface of the C-domain.


Subject(s)
Intrinsically Disordered Proteins , Prion Proteins , Animals , Circular Dichroism , Intrinsically Disordered Proteins/chemistry , Mice , Prion Proteins/chemistry , Protein Domains
7.
Front Plant Sci ; 12: 753217, 2021.
Article in English | MEDLINE | ID: mdl-34659322

ABSTRACT

Plant diseases are important issues in agriculture, and the development of effective and environment-friendly means of disease control is crucial and highly desired. Antimicrobial peptides (AMPs) are known as potential alternatives to chemical pesticides because of their potent broad-spectrum antimicrobial activity and because they have no risk, or have only a low risk, of developing chemical-resistant pathogens. In this study, we designed a series of amphipathic helical peptides with different spatial distributions of positive charges and found that the peptides that had a special sequence pattern "BBHBBHHBBH" ("B" for basic residue and "H" for hydrophobic residue) displayed excellent bactericidal and fungicidal activities in a wide range of economically important plant pathogens. The peptides with higher helical propensity had lower antimicrobial activity. When we modified the peptides with a long acyl chain at their N-terminus, their plant protection effect improved. Our application of the fatty acyl-modified peptides on the leaves of tomato and Arabidopsis plants lessened the infection caused by Pectobacterium carotovorum subsp. carotovorum and Botrytis cinerea. Our study provides important insights on the development of more potent novel AMPs for plant protection.

8.
Biomedicines ; 9(8)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34440159

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) involves impairment of Aß clearance. Neprilysin (NEP) is the most efficient Aß peptidase. Enhancement of the activity or expression of NEP may provide a prominent therapeutic strategy against AD. AIMS: Ten hydroxylated monocarbonyl curcumin derivatives were designed, synthesized and evaluated for their NEP upregulating potential using sensitive fluorescence-based Aß digestion and inhibition assays. RESULTS: Compound 4 was the most active one, resulting in a 50% increase in Aß cleavage activity. Cyclohexanone-bearing derivatives exhibited higher activity enhancement compared to their acetone counterparts. Inhibition experiments with the NEP-specific inhibitor thiorphan resulted in dramatic cleavage reduction. Conclusion: The increased Aß cleavage activity and the ease of synthesis of 4 renders it an extremely attractive lead compound.

9.
Front Microbiol ; 12: 678330, 2021.
Article in English | MEDLINE | ID: mdl-34220763

ABSTRACT

Searching for new antimicrobials is a pressing issue to conquer the emergence of multidrug-resistant (MDR) bacteria and fungi. Antimicrobial peptides (AMPs) usually have antimicrobial mechanisms different from those of traditional antibiotics and bring new hope in the discovery of new antimicrobials. In addition to antimicrobial activity, stability and target selectivity are important concerns to decide whether an antimicrobial peptide can be applied in vivo. Here, we used a simple de novo designed peptide, pepD2, which contains only three kinds of amino acid residues (W, K, L), as an example to evaluate how the residues and modifications affect the antimicrobial activity against Acinetobacter baumannii, stability in plasma, and toxicity to human HEK293 cells. We found that pepI2 with a Leu→Ile substitution can decrease the minimum bactericidal concentrations (MBC) against A. baumannii by one half (4 µg/mL). A D-form peptide, pepdD2, in which the D-enantiomers replaced the L-enantiomers of the Lys(K) and Leu(L) residues, extended the peptide half-life in plasma by more than 12-fold. PepD3 is 3-residue shorter than pepD2. Decreasing peptide length did not affect antimicrobial activity but increased the IC50 to HEK293 cells, thus increased the selectivity index (SI) between A. baumannii and HEK293 cells from 4.7 to 8.5. The chain length increase of the N-terminal acyl group and the Lys→Arg substitution greatly enhanced the hemolytic activity, hence those modifications are not good for clinical application. Unlike colistin, the action mechanism of our peptides relies on negatively charged lipids rather than lipopolysaccharides. Therefore, not only gram-negative bacteria but also gram-positive bacteria can be killed by our peptides.

10.
Appl Environ Microbiol ; 87(13): e0044221, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33893118

ABSTRACT

Enterococcus faecalis, a member of the commensal flora in the human gastrointestinal tract, has become a threatening nosocomial pathogen because it has developed resistance to many known antibiotics. More concerningly, resistance gene-carrying E. faecalis cells may transfer antibiotic resistance to resistance-free E. faecalis cells through their unique quorum sensing-mediated plasmid transfer system. Therefore, we investigated the role of probiotic bacteria in the transfer frequency of the antibiotic resistance plasmid pCF10 in E. faecalis populations to mitigate the spread of antibiotic resistance. Bacillus subtilis subsp. natto is a probiotic strain isolated from Japanese fermented soybean foods, and its culture fluid potently inhibited pCF10 transfer by suppressing peptide pheromone activity from chromosomally encoded CF10 (cCF10) without inhibiting E. faecalis growth. The inhibitory effect was attributed to at least one 30- to 50-kDa extracellular protease present in B. subtilis subsp. natto. Nattokinase of B. subtilis subsp. natto was involved in the inhibition of pCF10 transfer and cleaved cCF10 (LVTLVFV) into LVTL plus VFV fragments. Moreover, the cleavage product LVTL (L peptide) interfered with the conjugative transfer of pCF10. In addition to cCF10, faecalis-cAM373 and gordonii-cAM373, which are mating inducers of vancomycin-resistant E. faecalis, were also cleaved by nattokinase, indicating that B. subtilis subsp. natto can likely interfere with vancomycin resistance transfer in E. faecalis. Our work shows the feasibility of applying fermentation products of B. subtilis subsp. natto and L peptide to mitigate E. faecalis antibiotic resistance transfer. IMPORTANCE Enterococcus faecalis is considered a leading cause of hospital-acquired infections. Treatment of these infections has become a major challenge for clinicians because some E. faecalis strains are resistant to multiple clinically used antibiotics. Moreover, antibiotic resistance genes can undergo efficient intra- and interspecies transfer via E. faecalis peptide pheromone-mediated plasmid transfer systems. Therefore, this study provided the first experimental demonstration that probiotics are a feasible approach for interfering with conjugative plasmid transfer between E. faecalis strains to stop the transfer of antibiotic resistance. We found that the extracellular protease(s) of Bacillus subtilis subsp. natto cleaved peptide pheromones without affecting the growth of E. faecalis, thereby reducing the frequency of conjugative plasmid transfer. In addition, a specific cleaved pheromone fragment interfered with conjugative plasmid transfer. These findings provide a potential probiotic-based method for interfering with the transfer of antibiotic resistance between E. faecalis strains.


Subject(s)
Bacillus , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/genetics , Probiotics/pharmacology , Bacillus/genetics , Bacillus/metabolism , Bacterial Proteins/metabolism , Enterococcus faecalis/metabolism , Fermentation , Gene Transfer, Horizontal , Oligopeptides/genetics , Peptide Hydrolases/metabolism , Pheromones/genetics , Pheromones/metabolism , Plasmids , Signal Transduction , Bacillus subtilis
12.
Sci Rep ; 7(1): 8691, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821738

ABSTRACT

In order to directly observe the refolding kinetics from a partially misfolded state to a native state in the bottom of the protein-folding funnel, we used a "caging" strategy to trap the ß-sheet structure of ubiquitin in a misfolded conformation. We used molecular dynamics simulation to generate the cage-induced, misfolded structure and compared the structure of the misfolded ubiquitin with native ubiquitin. Using laser flash irradiation, the cage can be cleaved from the misfolded structure within one nanosecond, and we monitored the refolding kinetics of ubiquitin from this misfolded state to the native state by photoacoustic calorimetry and photothermal beam deflection techniques on nanosecond to millisecond timescales. Our results showed two refolding events in this refolding process. The fast event is shorter than 20 ns and corresponds to the instant collapse of ubiquitin upon cage release initiated by laser irradiation. The slow event is ~60 µs, derived from a structural rearrangement in ß-sheet refolding. The event lasts 10 times longer than the timescale of ß-hairpin formation for short peptides as monitored by temperature jump, suggesting that rearrangement of a ß-sheet structure from a misfolded state to its native state requires more time than ab initio folding of a ß-sheet.


Subject(s)
Ubiquitin/chemistry , Calorimetry , Humans , Kinetics , Least-Squares Analysis , Molecular Dynamics Simulation , Mutant Proteins/metabolism , Photoacoustic Techniques , Photolysis , Protein Folding , Structural Homology, Protein , Thermodynamics , Time Factors
13.
J Phys Chem B ; 120(34): 8818-29, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27472305

ABSTRACT

The conformation and dynamics of the unfolded state of ubiquitin doubly labeled regiospecifically with Alexa488 and Alexa647 were investigated using single-molecule fluorescence spectroscopy. The line confocal fluorescence detection system combined with the rapid sample flow enabled the characterization of unfolded proteins at the improved structural and temporal resolutions compared to the conventional single-molecule methods. In the initial stage of the current investigation, however, the single-molecule Förster resonance energy transfer (sm-FRET) data of the labeled ubiquitin were flawed by artifacts caused by the adsorption of samples to the surfaces of the fused-silica flow chip and the sample delivery system. The covalent coating of 2-methacryloyloxyethyl phosphorylcholine polymer to the flow chip surface was found to suppress the artifacts. The sm-FRET measurements based on the coated flow chip demonstrated that the histogram of the sm-FRET efficiencies of ubiquitin at the native condition were narrowly distributed, which is comparable to the probability density function (PDF) expected from the shot noise, demonstrating the structural homogeneity of the native state. In contrast, the histogram of the sm-FRET efficiencies of the unfolded ubiquitin obtained at a time resolution of 100 µs was distributed significantly more broadly than the PDF expected from the shot noise, demonstrating the heterogeneity of the unfolded state conformation. The variety of the sm-FRET efficiencies of the unfolded state remained even after evaluating the moving average of traces with a window size of 1 ms, suggesting that conformational averaging of the heterogeneous conformations mostly occurs in the time domain slower than 1 ms. Local structural heterogeneity around the labeled fluorophores was inferred as the cause of the structural heterogeneity. The heterogeneity and slow dynamics revealed by the line confocal tracking of sm-FRET might be common properties of the unfolded proteins.


Subject(s)
Fluorescence Resonance Energy Transfer , Protein Unfolding , Single Molecule Imaging , Thermodynamics , Ubiquitin/analysis , Polymers/chemistry , Probability , Ubiquitin/isolation & purification
14.
Carbohydr Res ; 387: 46-53, 2014 Mar 31.
Article in English | MEDLINE | ID: mdl-24589445

ABSTRACT

Our aim was to explore the effects of functional groups at carbon-2 (C2) of a sugar on the conformational properties of the peptide backbone. Three monosaccharides, mannose, galactose, and N-acetylgalactosamine (GalNAc), were added separately to the serine side-chain of a hamster prion peptide because it is a sensitive model for comparing the effect of protein modification on the conformational properties of the polypeptide chain. In buffer, this prion peptide goes through a gradual coil-to-ß structural conversion and forms amyloid fibrils slowly during incubation. Our results showed that a sugar with an N-acetyl amino group in the equatorial configuration (GalNAc) or with a hydroxyl group in the axial configuration (mannose) on C2 had a greater inhibitory effect on the amyloidogenesis of the prion peptide than a sugar with the hydroxyl group in the equatorial configuration (galactose). We suggest that galactosylation has less effect than mannosylation or GalNAc glycosylation on promoting turn formation at the glycosylation site and on inhibition of amyloidogenesis. The anti-amyloidogenic property of mannose implies that protein mannosylation has an anti-aggregation function.


Subject(s)
Acetylgalactosamine/chemistry , Galactose/chemistry , Mannose/chemistry , N-Acetylgalactosaminyltransferases/chemistry , Animals , Carbon/chemistry , Cricetinae , Glycosylation , Mucins/chemistry , Peptides/chemistry , Protein Conformation , Serine/chemistry
15.
PLoS One ; 8(7): e67967, 2013.
Article in English | MEDLINE | ID: mdl-23844138

ABSTRACT

The principal event underlying the development of prion disease is the conversion of soluble cellular prion protein (PrP(C)) into its disease-causing isoform, PrP(Sc). This conversion is associated with a marked change in secondary structure from predominantly α-helical to a high ß-sheet content, ultimately leading to the formation of aggregates consisting of ordered fibrillar assemblies referred to as amyloid. In vitro, recombinant prion proteins and short prion peptides from various species have been shown to form amyloid under various conditions and it has been proposed that, theoretically, any protein and peptide could form amyloid under appropriate conditions. To identify the peptide segment involved in the amyloid core formed from recombinant full-length mouse prion protein mPrP(23-230), we carried out seed-induced amyloid formation from recombinant prion protein in the presence of seeds generated from the short prion peptides mPrP(107-143), mPrP(107-126), and mPrP(127-143). Our results showed that the amyloid fibrils formed from mPrP(107-143) and mPrP(127-143), but not those formed from mPrP(107-126), were able to seed the amyloidogenesis of mPrP(23-230), showing that the segment residing in sequence 127-143 was used to form the amyloid core in the fibrillization of mPrP(23-230).


Subject(s)
Amyloid/chemistry , Peptide Fragments/chemistry , Prions/chemistry , Amino Acid Sequence , Amyloid/ultrastructure , Animals , Kinetics , Mice , Molecular Sequence Data , Prion Proteins , Prions/genetics , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
16.
Amino Acids ; 45(4): 785-96, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23736988

ABSTRACT

The amino acid sequences in the amyloidogenic region (amino acids 108-144) of several mammalian prion proteins were compared and variations were found to occur at residues 109 (M or L), 112 (M or V), 129 (M, V, or L), 135 (N or S), 138 (M, L, or I), 139 (M or I), and 143 (N or S). Using the bovine PrP peptide (residues 108-144 based on the numbering of the human prion protein sequence) as a control peptide, several peptides with one amino acid differing from that of the bovine PrP peptide at residues 109, 112, 135, 138, 139, or 143 and several mammalian PrP peptides were synthesized, and the effects of these amino acid substitutions on the amyloidogenic properties of these peptides were compared and discussed on the basis of the chemical and structural properties of amino acids. Our results showed that the V112M substitution accelerated nucleation of amyloidogenesis, while the N143S and I139M substitutions retarded nucleation. These effects tended to cancel each other out when two substitutions with opposite effects were present on the same peptide. Moreover, acceleration or inhibition of nucleation was not necessarily correlated with effect on seeding efficiency. Using amyloid fibrils prepared from the bovine PrP peptide as seeds, the seeding efficiency for the monomer peptides with the M129L, S135N, N143S, or I139M substitution was decreased compared to that for bPrP peptide. Of all the mammalian peptides used in this study, the dog, mule deer, and pig PrP peptides had the lowest seeding efficiencies.


Subject(s)
Amino Acids/chemistry , Amyloidogenic Proteins/chemistry , Prions/chemistry , Animals , Cattle , Deer , Dogs , Humans , Swine
17.
J Phys Chem B ; 117(13): 3459-68, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23458420

ABSTRACT

In this work, we found that, during storage or after UV irradiation, ThT is demethylated or oxidized, forming three derivatives. These three derivatives were purified by high performance liquid chromatography and characterized by mass and nuclear magnetic resonance spectroscopy and the spectroscopic properties of pure ThT and the derivatives carefully compared. Our results show that the emission peak at 450 nm results from oxidized ThT and not from the monomeric form of ThT, as previously proposed. The partial conversion of ThT into oxidized and demethylated derivatives has an effect on amyloid detection using ThT assay. Irradiated ThT has the same lag time as pure ThT in the amyloidogenesis of insulin, but the intensity of the emitted fluorescence is significantly decreased.


Subject(s)
Amyloid/chemistry , Thiazoles/chemistry , Ultraviolet Rays , Benzothiazoles , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...