Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(34): 82717-82731, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37328726

ABSTRACT

The river-lake transitional zone provides a unique environment for the biological community and can reduce pollution inputs in lake ecosystems from their catchments. To explore environmental conditions with high purification potential in Lake Taihu and indicator species, we examined the river-to-lake changes in water and sediment quality and benthic invertebrate communities in the transitional zone of four regions. The spatial variations in the environment and invertebrate community observed in this study followed the previously reported patterns in Taihu; the northern and western regions were characterized by higher nutrient concentrations in water, higher heavy metal concentrations in sediment, and higher total invertebrate density and biomass dominated by pollution-tolerant oligochaetes and chironomids. Although nutrient concentrations were low and transparency was high in the eastern region, the taxon richness was the lowest there, which disagreed with the previous findings and might be due to a poor cover of macrophytes in this study. The river-to-lake change was large in the southern region for water quality and the invertebrate community. Water circulation induced by strong wind-wave actions in the lake sites of the southern region is assumed to have promoted photosynthetic and nutrient uptake activities and favored invertebrates that require well-aerated conditions such as polychaetes and burrowing crustaceans. Invertebrates usually adapted to brackish and saline environments are suggested to be indicators of a well-circulated environment with active biogeochemical processes and a less eutrophic state in Taihu, and wind-wave actions are key to maintaining such a community and natural purifying processes.


Subject(s)
Ecosystem , Lakes , Animals , Lakes/chemistry , Geologic Sediments , Invertebrates , Biomass , China , Eutrophication , Environmental Monitoring
2.
PLoS One ; 17(10): e0273423, 2022.
Article in English | MEDLINE | ID: mdl-36279282

ABSTRACT

The transient electromagnetic method (TEM) is widely applied in coal hydrogeological exploration owing to its sensitivity to low-resistivity bodies. However, when a coal seam is buried deep, particularly if there are multiple electrical layers in the vertical direction of the overlying stratum, the results of the calculation using the late-channel empirical formula of the TEM may no longer reflect the actual situation. In this study, we evaluated the principle of the one-dimensional (1D) Occam algorithm and the steps for performing an inversion. We proposed various two-, three-, and four-layer electrical models for inversion using the 1D Occam algorithm. Our results are consistent with the electrical distribution of the models, thus indicating the effectiveness of the algorithm. A test project of large-depth transient electromagnetic exploration in the Datong Coalfield in Shanxi, China, was selected for experimental verification. The 1D Occam inversion was used to successfully identify various electrical strata overlying the coal seam.


Subject(s)
Coal Mining , Coal , Coal Mining/methods , Electromagnetic Phenomena , Electricity , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...