Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 99: 27-42, 2022 01.
Article in English | MEDLINE | ID: mdl-34562597

ABSTRACT

Depression is an increasingly common but extremely serve mood disorder that remains poorly understood and inadequately treated. Fast-spiking parvalbumin-positive interneurons (PVIs), a subpopulation of GABAergic interneurons (GABA, g-aminobutyric acid), exhibit a widespread distribution throughout the hippocampus, and has been reported to play an important role in a variety of mental disorders. However, the relationship between depression and hippocampal PVIs remains unclear. Here in this present study, a series of experiments were conducted to clarify the potential relationship. Here, chronic unpredicted mild stress (CUMS) and Lipopolysaccharide (LPS) injection were introduced to induce depression-like behavior in mice, and led to a clear decline in PVIs numbers in the ventral hippocampal (vHPC), particularly in the ventral dentate gyrus (vDG) subfield. After a selectively removal of the PVIs in PV-ires-Cre::Ai14 mice, we confirmed that ablation of PVIs from the vDG induced depression-like behavior. Furthermore, we found that the removal of vDG-PVIs induced depression likely to be accounted for upregulation of neuroinflammation. These findings facilitate us better understand the role of hippocampal PVIs in depression.


Subject(s)
Depression , Parvalbumins , Animals , Dentate Gyrus/metabolism , Hippocampus/metabolism , Interneurons/metabolism , Mice , Parvalbumins/metabolism
2.
Cells ; 10(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-34205911

ABSTRACT

Hypoxia-inducible factor 1 can sufficiently control the progress of neurological symptoms after ischemic stroke owing to their actions associated with its downstream genes. In this study, we evaluated the role of HIF-1α in attenuating brain damage after endothelin-1 injection. Focal cerebral ischemia in mice were induced by endothelin-1 microinjection. Hypoxia-inducible factor 1 activator, dimethyloxalylglycine (DMOG), and HIF-1α inhibitor, acriflavine (ACF), were used to evaluate the hypoxia-inducible factor 1 activity during cerebral ischemia. The expression levels of HIF-1α, glial fibrillary acidic protein (GFAP), interleukin-10 (IL-10), inducible nitric oxide synthase (iNOS), phosphorylated I-kappa-B-alpha/total I-kappa-B-alpha (p-IκBα/IκBα) and nuclear factor kappa B (NF-kB) were assessed. Besides, mRNA levels of IL-10, tumor necrosis factor- alpha (TNF-α), and NF-kB were also analyzed. Results showed a noticeable increase in hypoxia-inducible factor 1 and IL-10 levels in the DMOG group with a decline in iNOS, TNF-α, and NF-kB levels, implying the anti-inflammatory role of hypoxia-inducible factor 1 activator following stroke. These findings were further corroborated by GFAP immunostaining that showed astrocytic activation to be inhibited 12 days post-ischemia, as well as histological and TEM analyses that demonstrated hypoxia-inducible factor 1 induction to alleviate neuronal soma damage and cell death. Based on our study, HIF-1α could be a potential therapeutic target for ischemic stroke.


Subject(s)
Brain Ischemia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemic Stroke/metabolism , Neuroglia/metabolism , Animals , Brain Ischemia/pathology , Cytokines/metabolism , Glial Fibrillary Acidic Protein/metabolism , Inflammation/metabolism , Inflammation/pathology , Ischemic Stroke/pathology , Mice , Neuroglia/pathology , Nitric Oxide Synthase Type II/metabolism
3.
Biomed Res Int ; 2021: 6664591, 2021.
Article in English | MEDLINE | ID: mdl-33791372

ABSTRACT

Depression is a common and disabling mental disorder with high recurrence rate. Searching for more effective treatments for depression is a long-standing primary objective in neuroscience. Agomelatine (AGO) was reported as an antidepressant with unique pharmacological effects. However, its effects and the underlying mechanism are still unclear. In this study, we sought to evaluate the antidepressant effects of AGO on the chronic restraint stress (CRS) mouse model and preliminarily investigate its effects on the gut microbial metabolites. The CRS model mice were established in 28 days with AGO (60 mg/kg/day, by oral) or fluoxetine (15 mg/kg/day, by oral) administration. The number of behavioral tests was conducted to evaluate the effect of AGO on depression-like behavior alleviation. Meanwhile, the expression of the BDNF/TrkB/pERK signaling pathway, apoptosis, autophagy, and inflammatory protein markers were assessed using western blot and immunofluorescence. Our findings show that AGO can attenuate the depressive-like behavior that significantly appeared in both sucrose preference and forced swimming tests. Additionally, a noticeable upregulation of autophagy including Beclin1 and LC3II, microglial activity marker Iba-1, and BDNF/TrkB/pERK signaling pathways are indicated. An obvious decreased expression of NF-κB, iNOS, and nNOS as well as apoptosis including Bax is observed in AGO administration mice. On the other hand, we found that AGO impacted the rebalancing of short-chain fatty acids (SCFAs) in mouse feces. Altogether, these findings suggest that AGO can exert antidepressant effects in a different molecular mechanism.


Subject(s)
Acetamides/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Behavior, Animal/drug effects , Depression , MAP Kinase Signaling System/drug effects , Stress, Psychological , Animals , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Depression/pathology , Disease Models, Animal , Male , Membrane Glycoproteins/metabolism , Mice , Protein-Tyrosine Kinases/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Stress, Psychological/pathology , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...