Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Sci China Life Sci ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38733513

ABSTRACT

Atmospheric vapor pressure deficit (VPD) increases with climate warming and may limit plant growth. However, gross primary production (GPP) responses to VPD remain a mystery, offering a significant source of uncertainty in the estimation of global terrestrial ecosystems carbon dynamics. In this study, in-situ measurements, satellite-derived data, and Earth System Models (ESMs) simulations were analysed to show that the GPP of most ecosystems has a similar threshold in response to VPD: first increasing and then declining. When VPD exceeds these thresholds, atmospheric drought stress reduces soil moisture and stomatal conductance, thereby decreasing the productivity of terrestrial ecosystems. Current ESMs underscore CO2 fertilization effects but predict significant GPP decline in low-latitude ecosystems when VPD exceeds the thresholds. These results emphasize the impacts of climate warming on VPD and propose limitations to future ecosystems productivity caused by increased atmospheric water demand. Incorporating VPD, soil moisture, and canopy conductance interactions into ESMs enhances the prediction of terrestrial ecosystem responses to climate change.

2.
J Fungi (Basel) ; 10(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786694

ABSTRACT

wetA, one of the conidiation center regulatory genes in many filamentous fungi, plays an important role in promoting asexual spores (conidia) maturation. Our recent research has found that knocking out or overexpressing MrwetA (a homolog of wetA) in Monascus ruber M7 does not affect the development of its asexual spores like other fungi, but both repress the development of its sexual spores (ascospores). However, the mechanism remains unclear. In this study, the function of MrwetA on sexual reproduction and secondary metabolism in M. ruber M7 was confirmed by a complementary experiment. Moreover, the regulatory roles of MrwetA in modulating the expression of genes involved in sexual reproduction, meiosis, and biosynthesis of Monascus pigment and citrinin were analyzed based on the transcriptional data. These results not only contribute to clarifying the regulation of the reproduction and secondary metabolism of Monascus spp., but also to enriching the regulation molecular mechanism of reproduction in filamentous fungi.

3.
Sci Total Environ ; 923: 171501, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447724

ABSTRACT

Understanding how nutrient addition affects the tree growth is critical for assessing forest ecosystem function and processes, especially in the context of increased nitrogen (N) and phosphorus (P) deposition. Subtropical forests are often considered N-rich and P-poor ecosystems, but few existing studies follow the traditional "P limitation" paradigm, possibly due to differences in nutrient requirements among trees of different size classes. We conducted a three-year fertilization experiment with four treatments (Control, N-treatment, P-treatment, and NP-treatment). We measured soil nutrient availability, leaf stoichiometry, and relative growth rate (RGR) of trees across three size classes (small, medium and large) in 64 plots. We found that N and NP-treatments increased the RGR of large trees. P-treatment increased the RGR of small trees. RGR was mainly affected by N addition, the total effect of P addition was only 10 % of that of N addition. The effect of nutrient addition on RGR was mainly regulated by leaf stoichiometry. This study reveals that nutrient limitation is size dependent, indicating that continuous unbalanced N and P deposition will inhibit the growth of small trees and increase the instability of subtropical forest stand structure, but may improve the carbon sink function of large trees.


Subject(s)
Ecosystem , Trees , Forests , Nitrogen/analysis , Phosphorus/chemistry , Soil/chemistry
4.
J Sci Food Agric ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38545944

ABSTRACT

BACKGROUND: Peanut peptides have good chelating ability with metal ions. However, there are few studies on the chelation mechanism of peanut peptides with calcium and absorption properties of peptide-calcium complex. RESULTS: Peptides with high calcium chelating rate were isolated and purified from peanut protein hydrolysate (PPH), and the chelation rate of component F21 was higher (81.4 ± 0.8%). Six peptides were identified from component F21 by liquid chromatography-tandem mass spectrometry, and the frequency of acidic amino acids and arginine in the amino acid sequence was higher in all six peptides. Peanut peptide-calcium complex (PPH21-Ca) was prepared by selecting component F21 (PPH21). Ultraviolet analysis indicated that the chelate reaction occurred between peanut peptide and calcium ions. Fourier transform infrared analysis showed that the chelating sites were carboxyl and amino groups on the amino acid residues of peptides. Scanning electron microscopy revealed that the surface of peanut peptide had a smooth block structure, but the surface of the complex had a granular morphology. Caco-2 cell model tests revealed that the bioavailability of PPH21-Ca was 58.4 ± 0.5%, which was significantly higher than that of inorganic calcium at 37.0 ± 0.4%. CONCLUSION: Peanut peptides can chelate calcium ions by carboxyl and amino groups, and the peptide-calcium complex had higher bioavailability. This study provides a theoretical basis for the development of new calcium supplement products that are absorbed easily. © 2024 Society of Chemical Industry.

5.
Sci Total Environ ; 924: 171596, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38461990

ABSTRACT

Climate change affects microbial community physiological strategies and thus regulates global soil organic carbon (SOC) decomposition. However, SOC decomposition by microorganisms, depending on home-field advantage (HFA, indicating a faster decomposition rate in 'Home' than 'Away' conditions) or environmental advantage (EA, indicating a faster decomposition rate in warmer-wetter environments than in colder-drier environments) remains unknown. Here, a soil transplantation experiment was conducted between warmer-wetter and colder-drier evergreen broadleaved forests in subtropical China. Specifically, soil samples were collected along a 60 cm soil profile, including 0-15, 15-30, 30-45, and 45-60 cm layers after one year of transplantation. SOC fractions, soil chemical properties, and microbial communities were evaluated to assess where there was an HFA of EA in SOC decomposition, along with an exploration of internal linkages. Significant HFAs were observed, particularly in the deep soils (30-60 cm) (P < 0.05), despite the lack of a significant EA along a soil profile, which was attributed to environmental changes affecting soil fungal communities and constraining SOC decomposition in 'Away' conditions. The soils transplanted from warmer-wetter to colder-drier environments changed the proportions of Mortiereltomycota or Basidiomycota fungal taxa in deep soils. Furthermore, the shift from colder-drier to warmer-wetter environments decreased fungal α-diversity and the proportion of fungal necromass carbon, ultimately inhibiting SOC decomposition in 'Away' conditions. However, neither HFAs nor EAs were significantly present in the topsoil (0-30 cm), possibly due to the broader adaptability of bacterial communities in these layers. These results suggest that the HFA of SOC decomposition in deep soils may mostly depend on the plasticity of fungal communities. Moreover, these results highlight the key roles of microbial communities in the SOC decomposition of subtropical forests, especially in deep soils that are easily ignored.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/chemistry , Forests , Climate Change , Bacteria , Soil Microbiology
6.
Food Chem Toxicol ; 187: 114586, 2024 May.
Article in English | MEDLINE | ID: mdl-38493978

ABSTRACT

The risk assessment of heavy metals in tea is extremely imperative for the health of tea consumers. However, the effects of varietal variations and seasonal fluctuations on heavy metals and minerals in tea plants remain unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to evaluate the contents of aluminum (Al), manganese (Mn), magnesium (Mg), boron (B), calcium (Ca), copper (Cu), cobalt (Co), iron (Fe), sodium (Na), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and antimony (Sb) in the two categories of young leaves (YL) and mature leaves (ML) of tea (Camellia sinensis) cultivars throughout the growing seasons. The results showed significant variations in the contents of the investigated nutrients both among the different cultivars and growing seasons as well. Furthermore, the average concentrations of Al, Mn, Mg, B, Ca, Cu, Co, Fe, Na, Zn, As, Cd, Cr, Ni, and Sb in YL ranged, from 671.58-2209.12, 1260.58-1902.21, 2290.56-2995.36, 91.18-164.68, 821.95-5708.20, 2.55-3.80, 3.96-25.22, 37.95-202.84, 81.79-205.05, 27.10-69.67, 0.028-0.053, 0.065-0.127, 2.40-3.73, 10.57-12.64, 0.11-0.14 mg kg-1, respectively. In ML, the concentrations were 2626.41-7834.60, 3980.82-6473.64, 3335.38-4537.48, 327.33-501.70, 9619.89-13153.68, 4.23-8.18, 17.23-34.20, 329.39-567.19, 145.36-248.69, 40.50-81.42, 0.089-0.169, 0.23-0.27, 5.24-7.89, 18.51-23.97, 0.15-0.19 mg kg-1, respectively. The contents of all analyzed nutrients were found to be higher in ML than in YL. Target hazard quotients (THQ) of As, Cd, Cr, Ni, and Sb, as well as the hazard index (HI), were all less than one, suggesting no risk to human health via tea consumption. This research might provide the groundwork for essential minerals recommendations, as well as a better understanding and management of heavy metal risks in tea.


Subject(s)
Arsenic , Camellia sinensis , Metals, Heavy , Humans , Seasons , Cadmium/analysis , Environmental Monitoring/methods , Metals, Heavy/toxicity , Metals, Heavy/analysis , Arsenic/analysis , Minerals , Chromium/analysis , Nickel/analysis , Manganese/analysis , Aluminum/analysis , Risk Assessment , Zinc/analysis , Tea/chemistry
7.
Carbohydr Polym ; 332: 121913, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431394

ABSTRACT

This study demonstrated the gelation capacity, gelation behavior, and mechanism of Ficus awkeotsang Makino pectin (JFSP) in acidic media (pH 3.4-4.5). JFSP exhibited an extraordinary ability to spontaneously form a gel at a low polymer concentration (0.3 %, w/v) within the pH range of 3.75-4.05 at room temperature, without the need to introduce exogenous metal ions or co-solutes. Analysis of zeta potential and carboxyl dissociation extent revealed the protonation of free carboxyl groups within JFSP under acidic conditions. Atomic force microscopy and small angle X-ray scattering elucidated the aggregation morphology and folding conformation of JFSP. At pH 3.8, the correlation length (ξ) of JFSP chains decreased to around 1.67 nm. Rheological experiments confirmed the formation of a stronger gel network at pH 3.8 and 4.0, with good thermal and freeze-thaw stability. Isothermal Titration Calorimetry (ITC), temperature sweeps, and gelation force analyses emphasized the pivotal role of hydrogen bonds in JFSP gels at pH 3.8 and 4.0. Further reducing the pH to 3.4-3.6 disrupted the dynamic equilibrium of gel-driving forces, leading to the formation of a flocculated gel network. These findings deepen our understanding of JFSP behavior in low-acid conditions, which may be useful for further food formulations at these conditions.

8.
J Am Chem Soc ; 146(9): 6189-6198, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38386630

ABSTRACT

Polyketides with the isochroman-3-one pharmacophore are rare among fungal natural products as their biosynthesis requires an unorthodox S-type aromatic ring cyclization. Genome mining uncovered a conserved gene cluster in select leotiomycetous fungi that encodes the biosynthesis of cytosporones, including isochroman-3-one congeners. Combinatorial biosynthesis in total biosynthetic and biocatalytic formats in Saccharomyces cerevisiae and in vitro reconstitution of key reactions with purified enzymes revealed how cytosporone structural and bioactivity diversity is generated. The S-type acyl dihydroxyphenylacetic acid (ADA) core of cytosporones is assembled by a collaborating polyketide synthase pair. Thioesterase domain-catalyzed transesterification releases ADA esters, some of which are known Nur77 modulators. Alternatively, hydrolytic release allows C6 hydroxylation by a flavin-dependent monooxygenase, yielding a trihydroxybenzene moiety. Reduction of the C9 carbonyl by a short chain dehydrogenase/reductase initiates isochroman-3-one formation, affording cytosporones with cytotoxic and antimicrobial activity. Enoyl di- or trihydroxyphenylacetic acids are generated as shunt products, while isocroman-3,4-diones are formed by autoxidation. The cytosporone pathway offers novel polyketide biosynthetic enzymes for combinatorial synthetic biology to advance the production of "unnatural" natural products for drug discovery.


Subject(s)
Biological Products , Polyketides , Fungi/genetics , Saccharomyces cerevisiae/metabolism , Polyketide Synthases/metabolism , Polyketides/chemistry , Biological Products/metabolism
9.
Front Plant Sci ; 15: 1335250, 2024.
Article in English | MEDLINE | ID: mdl-38410735

ABSTRACT

Introduction: As a renewable forest resource, bamboo plays a role in sustainable forest development. However, traditional cutting systems, selection cutting (SeC) and clear-cutting (ClC), result in an unsustainable production of bamboo forests due to labor-consuming or bamboo degradation. Recently, a strip clear-cutting (StC) was theoretically proposed to promote the sustainability of bamboo production, while little is known about its application consequence. Methods: Based on a 6-year experiment, we applied the strip clear-cutting system in a typical running bamboo (Phyllostachys glauca McClure) forest to assess its feasibility and sustainability. Using SeC and ClC as controls, we set three treatments with different strip widths (5 m, 10 m, and 20 m) for strip clear-cutting, simplified as StC-5, StC-10, and StC-20, respectively. Then, we investigated leaf physiological traits, bamboo size and productivity, population features, and economic benefits for all treatments. Results: The stands managed by StC had high eco-physiological activities, such as net photosynthetic rate (P n), photosynthetic nitrogen use efficiency (PNUE), and photosynthetic phosphorus use efficiency (PPUE), and thus grew well, achieved a large diameter at breast height (DBH), and were tall. The stand biomass of StC (8.78 t hm-2 year-1) was 1.19-fold and 1.49-fold greater than that of SeC and ClC, respectively, and StC-10 and StC-20 were significantly higher than SeC or ClC (p< 0.05). The income and profit increased with the increase in stand density and biomass, and StC-20 and StC-10 were significantly higher than SeC or ClC (p< 0.05). Using principal components analysis and subordinate function analysis, we constructed a composite index to indicate the sustainability of bamboo forests. For the sustainability assessment, StC-10 had the highest productive sustainability (0.59 ± 0.06) and the second highest economic sustainability (0.59 ± 0.11) in all cutting treatments. StC-10 had the maximum overall sustainability, with a value of 0.53 ± 0.02, which was significantly higher than that of ClC (p< 0.05). Conclusion: The results verified that StC for Phyllostachys glauca forests is feasible and sustainable as its sustainability index outweighs those of traditional cutting systems (SeC and ClC), and 10 m is the optimum distance for the strip width of StC. Our findings provide a new cutting system for managing other running bamboo forests sustainably.

10.
J Oleo Sci ; 73(2): 201-213, 2024.
Article in English | MEDLINE | ID: mdl-38311410

ABSTRACT

Effects of dry and wet grind on peanut oil and protein yield, oil bodies (OBs) stability, fatty acid composition, protein composition and functional characteristics were systematically analyzed. Results showed that peanut oil and protein yields reached highest at dry grind 90 s (92.56% and 83.05%, respectively), while peanut oil and protein yields were 94.58% and 85.36%, respectively, at wet grind 120 s. Peanut oil and protein yields by wet grind was 2.18% and 2.78% higher than that of dry grind, respectively. Surface protein concentration (Г) and absolute value of zeta potential of OBs extracted by wet grind (WOBs) were 11.53 mg/m 2 and 18.51 mV, respectively, which were higher than OBs extracted by dry grind (DOBs), indicating stability of WOBs was higher than DOBs. Relative contents of oleic acid and linoleic acid in peanut oil, essential and hydrophobic amino acids in protein extracted by wet grind were higher than dry grind. There was little difference in protein composition between wet and dry grind, but thermal denaturation degree of protein obtained by wet grind was lower than dry grind. Solubility, oil retention, emulsion stability, foaming and foam stability of protein obtained by wet grind were better than dry grind. Results from this study provided theoretical basis for grind pretreatment selection of aqueous enzymatic method.


Subject(s)
Arachis , Lipid Droplets , Peanut Oil/chemistry , Arachis/chemistry , Lipid Droplets/chemistry , Fatty Acids/analysis , Solubility
11.
Appl Microbiol Biotechnol ; 108(1): 154, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240803

ABSTRACT

Monascus pilosus has been used to produce lipid-lowering drugs rich in monacolin K (MK) for a long period. Genome mining reveals there are still many potential genes worth to be explored in this fungus. Thereby, efficient genetic manipulation tools will greatly accelerate this progress. In this study, we firstly developed the protocol to prepare protoplasts for recipient of CRISPR/Cas9 system. Subsequently, the vector and donor DNA were co-transformed into recipients (106 protoplasts/mL) to produce 60-80 transformants for one test. Three genes (mpclr4, mpdot1, and mplig4) related to DNA damage response (DDR) were selected to compare the gene replacement frequencies (GRFs) of Agrobacterium tumefaciens-mediated transformation (ATMT) and CRISPR/Cas9 gene editing system (CGES) in M. pilosus MS-1. The results revealed that GRF of CGES was approximately five times greater than that of ATMT, suggesting that CGES was superior to ATMT as a targeting gene editing tool in M. pilosus MS-1. The inactivation of mpclr4 promoted DDR via the non-homologous end-joining (NHEJ) and increased the tolerances to DNA damaging agents. The inactivation of mpdot1 blocked DDR and led to the reduced tolerances to DNA damaging agents. The inactivation of mplig4 mainly blocked the NHEJ pathway and led to obviously reduced tolerances to DNA damaging agents. The submerged fermentation showed that the ability to produce MK in strain Δmpclr4 was improved by 52.6% compared to the wild type. This study provides an idea for more effective exploration of gene functions in Monascus strains. KEY POINTS: • A protocol of high-quality protoplasts for CGES has been developed in M. pilosus. • The GRF of CGES was about five times that of ATMT in M. pilosus. • The yield of MK for Δmpclr4 was enhanced by 52.6% compared with the wild type.


Subject(s)
Gene Editing , Monascus , Monascus/genetics , Monascus/metabolism , CRISPR-Cas Systems , Gene Targeting/methods , Lovastatin/metabolism , Agrobacterium tumefaciens/genetics , DNA/metabolism
12.
Int J Biol Macromol ; 255: 128208, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979745

ABSTRACT

Increasing data suggested that histone methylation modification plays an important role in regulating biosynthesis of secondary metabolites (SMs). Monascus spp. have been applied to produce hypolipidemic drug lovastatin (also called monacolin K, MK) and edible Monascus-type azaphilone pigments (MonAzPs). However, little is known about how histone methylation regulates MK and MonAzPs. In this study, we constructed H3K9 methyltransferase deletion strain ΔMpDot1 and H4K20 methyltransferase deletion strain ΔMpSet9 using Monascus pilosus MS-1 as the parent. The result showed that deletion of MpDot1 reduced the production of MK and MonAzPs, and deletion of MpSet9 increased MonAzPs production. Real-time quantitative PCR (RT-qPCR) showed inactivation of mpdot1 and mpset9 disturbed the expression of genes responsible for the biosynthesis of MK and MonAzPs. Western blot suggested that deletion of MpDot1 reduced H3K79me and H4K16ac, and deletion of MpSet9 decreased H4K20me3 and increased H4pan acetylation. Chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) showed ΔMpDot1 strain and ΔMpSet9 strain reduced the enrichment of H3K79me2 and H4K20me3 in the promoter regions of key genes for MK and MonAzPs biosynthesis, respectively. These results suggested that MpDot1 and MpSet9 affected the synthesis of SMs by regulating gene transcription and histone crosstalk, providing alternative approach for regulation of lovastatin and MonAzPs.


Subject(s)
Lovastatin , Monascus , Lovastatin/pharmacology , Histones/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Monascus/genetics , Monascus/metabolism
13.
Phys Rev Lett ; 131(21): 210603, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38072603

ABSTRACT

Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers to achieve robust noise resistance. To achieve universality, magic states preparation is a commonly approach for introducing non-Clifford gates. Here, we present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code, and further experimentally implement it on the Zuchongzhi 2.1 superconducting quantum processor. An average of 0.8983±0.0002 logical fidelity at different logical states with distance three is achieved, taking into account both state preparation and measurement errors. In particular, the logical magic states |A^{π/4}⟩_{L}, |H⟩_{L}, and |T⟩_{L} are prepared nondestructively with logical fidelities of 0.8771±0.0009, 0.9090±0.0009, and 0.8890±0.0010, respectively, which are higher than the state distillation protocol threshold, 0.859 (for H-type magic state) and 0.827 (for T-type magic state). Our work provides a viable and efficient avenue for generating high-fidelity raw logical magic states, which is essential for realizing non-Clifford logical gates in the surface code.

14.
Foods ; 12(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38002240

ABSTRACT

Oil body emulsions (OBEs) affect the final oil yield as an intermediate in the concurrent peanut oil and protein extraction process using an aqueous enzyme extraction (AEE) method. Roasting temperature promotes peanut cell structure breakdown, affecting OBE composition and stability and improving peanut oil and protein extraction rates. Therefore, this study aimed to investigate the effects of pretreatment at different roasting temperatures on peanut oil and protein yield extracted through AEE. The results showed that peanut oil and protein extraction rates peaked at 90 °C, 92.21%, and 77.02%, respectively. The roasting temperature did not change OBE composition but affected its stability. The OBE average particle size increased significantly with increasing temperature, while at 90 °C, the zeta potential peaked, and the interfacial protein concentration hit its lowest, indicating OBE stability was the lowest. Optical microscopy and confocal laser scanning microscopy confirmed the average particle size findings. The oil quality obtained after roasting treatment at 90 °C did not differ significantly from that at 50 °C. The protein composition remained unaffected by the roasting temperature. Conclusively, the 90 °C roasting treatment effectively improved the yield of peanut oil extracted using AEE, providing a theoretical basis for choosing a suitable pretreatment roasting temperature.

15.
Int J Biol Macromol ; 253(Pt 4): 127064, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37748593

ABSTRACT

The increase in pectin methylesterase (PME) activity on fresh-cut apple surface can smartly trigger the controlled release of bactericidal agents encapsulated within intelligent responsive Pickering emulsions. In this study, we developed a PME-responsive nanocomplex (W-H-II) to stabilize Pickering emulsion containing thyme essential oil (TEO), preserving fresh-cut apples. W-H-II, formed by heat-induced whey protein isolate (WPI) and high methoxyl pectin (HMP) (pH 4.5, 85 °C, 15 min, WPI:HMP ratio 1:2), exhibited good pH stability due to the stabilizing effects of hydrophobic, hydrogen bonding, and electrostatic interactions. The presence of PME triggered the demethylation of HMP within W-H-II, conferring PME response characteristics. Subsequently, a bacteriostasis experiment with pectinase-producing Bacillus subtilis provided evidence of PME-triggered TEO release from W-H-II-stabilized Pickering emulsion. Furthermore, microscopy techniques were employed to verify the demulsification behavior of the emulsion when PME activity ranged from 0.25 to 2.50 U mL-1. Finally, the PME-responsive TEO Pickering emulsion effectively preserved fresh-cut apples. Stored for 6 days at 5 °C and 10 °C, as the PME activity on the apple surface increased, the decay rate of the coated group was 0 %, with a total colony count below 3.0 log CFU g-1. This study introduces a novel intelligent preservation strategy for storing fresh-cut apples.


Subject(s)
Anti-Infective Agents , Malus , Oils, Volatile , Emulsions/chemistry , Whey Proteins/chemistry , Pectins/chemistry
16.
Foods ; 12(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37761154

ABSTRACT

In this study, the internal relationships among oil bodies (OBs), the protein-phospholipid interactions in aqueous phase, oil-water interface behavior, and the stability of reconstituted OBs were analyzed from the bulk phase, interface, and macro perspectives, and the stability mechanism of OBs was discussed. OB proteins and phospholipids were combined through hydrophobic and electrostatic interactions, resulting in the stretching of protein conformation. OB proteins and phospholipids act synergistically to increase interface pressure and the rate of increase in interface pressure with relatively stable elastic behavior, which is beneficial to the formation and stability of interfacial films. When OBs were reconstituted by an OB protein-phospholipid complex system, phospholipids bound to OB proteins through hydrophobic and electrostatic interactions. OB proteins and phospholipids uniformly covered the oil droplet surface of reconstituted OBs to form a stable interfacial film, which maintained the stability of OBs. The addition of phospholipids significantly reduced the particle size of OBs prepared by OB proteins in a dose-dependent manner, and particle size decreased with the increase in phospholipid content (p < 0.05). Phospholipids increased the net surface charge, enhanced electrostatic repulsion, and improved the physicochemical stability of reconstituted OBs. The stability mechanism elucidated in this study provides a theoretical basis for the demulsification of peanut OBs.

17.
Ultrason Sonochem ; 100: 106596, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37722249

ABSTRACT

This study investigated the effects of ultrasound on the self-assembly behavior of pea protein (PP)-high methoxyl pectin (HMP) complexes at pH 2.0 through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and intrinsic fluorescence analysis. The emulsion stabilization mechanism of PP-HMP treated with ultrasound (PP-HMP-US) was also elucidated. The results indicated that ultrasound increased the emulsifying activity index (EAI) and emulsifying stability index (ESI) of PP-HMP. Moreover, PP-HMP-US-based emulsions formed small, dispersed oil drops, which were stable during storage. PP-HMP- and PP-HMP-US-based emulsions did not demonstrate any creaming. The TEM results revealed that ultrasound can regulate the self-assembly behavior of PP and HMP to form spherical particles with a core-shell structure. This structure possessed low turbidity, a small particle size, and high absolute zeta potential values. The FTIR and intrinsic fluorescence spectra demonstrated that ultrasound increased the α-helix and ß-sheet contents and exposed the tryptophan groups to more hydrophilic environments. Ultrasound also promoted the PP-HMP self-assembly through electrostatic interaction and improved its oil-water interfacial behavior, as indicated by the EAI and ESI values of PP-HMP-US-based emulsions. The current results provide a reference for the development of an innovative emulsifier prepared by ultrasound-treated protein-pectin complexes at low pH.


Subject(s)
Pea Proteins , Pectins , Pectins/chemistry , Pea Proteins/chemistry , Emulsions/chemistry , Particle Size , Hydrogen-Ion Concentration
18.
Foods ; 12(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37628028

ABSTRACT

The aqueous enzymatic method is a form of green oil extraction technology with limited industrial application, owing to the need for the demulsification of the oil body intermediate product. Existing demulsification methods have problems, including low demulsification rates and high costs, such that new methods are needed. The free fatty acids produced by lipid hydrolysis can affect the stability of peanut oil body (POB) at a certain concentration. After screening even-carbon fatty acids with carbon chain lengths below ten, caproic acid was selected for the demulsification of POB using response surface methodology and a Box-Behnken design. Under the optimal conditions (caproic acid concentration, 0.22%; solid-to-liquid ratio, 1:4.7 (w/v); time, 61 min; and temperature, 79 °C), a demulsification rate of 97.87% was achieved. Caproic acid not only adjusted the reaction system pH to cause the aggregation of the POB interfacial proteins, but also decreased the interfacial tension and viscoelasticity of the interfacial film with an increasing caproic acid concentration to realize POB demulsification. Compared to pressed oil and soxhlet-extracted oil, the acid value and peroxide value of the caproic acid demulsified oil were increased, while the unsaturated fatty acid content and oxidation induction time were decreased. However, the tocopherol and tocotrienol contents were higher than those of the soxhlet-extracted oil. This study provides a new method for the demulsification of POB.

19.
Int J Biol Macromol ; 253(Pt 1): 126465, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37619689

ABSTRACT

This study aimed to investigate the effects of different wheat bran arabinoxylan (WBAX) concentrations (1, 2, 3, and 4 wt%) on the structural and physicochemical properties of WBAX-soybean protein isolate (SPI) emulsion-filled gels (EFGs) prepared using laccase and heat treatment. The properties of the various gels as well as their microstructure, rheology, and in vitro digestion behaviors were investigated. Results showed that WBAX-SPI EFGs with a 3 wt% WBAX concentration had a smooth and uniform appearance, high water holding capacity (98.5 ± 0.2 %), and enhanced mechanical properties. Rheological experiments suggested that a stronger and closer gel network was formed at 3 wt% WBAX concentration. Fourier transform infrared spectroscopy showed that laccase and heat treatment not only catalyzed the intramolecular crosslinking of WBAX and SPI, respectively, but also promoted the interaction between WBAX and SPI. Confocal laser scanning microscopy revealed that the WBAX gel network was interspersed within the SPI network. The interactions contributing to the gelation analysis revealed that chemical (disulfide bond) and physical (hydrogen bond and hydrophobic) interactions promoted the formation of denser EFGs. Furthermore, the WBAX-SPI EFGs provided a ß-carotene bioaccessibility of 21.8 ± 0.6 %. Therefore, our study suggests that WBAX-SPI EFGs hold promising potential for industrial applications in the delivery of ß-carotene.


Subject(s)
Dietary Fiber , Soybean Proteins , Soybean Proteins/chemistry , beta Carotene , Laccase , Emulsions , Carotenoids , Polysaccharides , Gels/chemistry , Rheology
20.
Food Chem ; 429: 136810, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37442086

ABSTRACT

Ultrasound could effectively change molecular structure of proteins, polysaccharides, and their interactions, and was used to treat the peanut protein isolate-high methoxy pectin (PPI-HMP) complexes in this study. Effects of different ultrasound parameters, PPI-HMP mixing ratio (40:1-5:2), and pH (2.0-8.0) on the PPI-HMP interactions were investigated. Turbidity, solution appearance, and Zeta-potential analysis revealed an electrostatic interaction between PPI and HMP from pH 2.0 to pH 6.0. Ultrasound changed the tertiary structure conformation of PPI according to the surface hydrophobicity analysis. Increased ultrasound power density and pH broke the hydrogen bonds between the complexes according to Fourier transform infrared spectroscopy analysis. Apparent viscosity and confocal laser scanning microscopy analysis showed that appropriate ultrasound treatment (5.43 W/cm3, 25 min, 25 °C) reduced the viscosity of the complexes, and enhanced the electrostatic and hydrophobic interactions between PPI and HMP. These findings will contribute to the application of PPI-HMP complexes in the food industry.


Subject(s)
Arachis , Pectins , Pectins/chemistry , Arachis/metabolism , Biopolymers , Polysaccharides/chemistry , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...