Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Hypertens Res ; 47(2): 375-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37872376

ABSTRACT

The SARS-CoV-2 pandemic, now in its third year, has had a profound impact on public health and economics all over the world. Different populations showed varied susceptibility to this virus and mortality after infection. Clinical and laboratory data revealed that the uncontrolled inflammatory response plays an important role in their poor outcome. Herein, we summarized the role of NF-κB activation during SARS-CoV-2 invasion and replication, particularly the angiotensin-converting enzyme 2 (ACE2)-mediated NF-κB activation. Then we summarized the COVID-19 drugs' impact on NF-κB activation and their problems. A favorable prognosis is linked with timely treatment with NF-κB activation inhibitors, such as TNFα, IL-1ß, and IL-6 monoclonal antibodies. However, further clinical researches are still required to clarify the time window, dosage of administration, contraindication, and potential side effects of these drugs, particularly for COVID-19 patients with hypertension, hyperglycemia, diabetes, or other chronic diseases.


Subject(s)
COVID-19 , Humans , NF-kappa B/metabolism , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Signal Transduction
2.
Adv Sci (Weinh) ; 9(13): e2105849, 2022 May.
Article in English | MEDLINE | ID: mdl-35253384

ABSTRACT

To enhance the compatibility between the polymer-based electrolytes and electrodes, and promote the interfacial ion conduction, a novel approach to engineer the interfaces between all-solid-state composite polymer electrolyte and electrodes using thin layers of ferroelectrics is introduced. The well-designed and ferroelectric-engineered composite polymer electrolyte demonstrates an attractive ionic conductivity of 7.9 × 10-5 S cm-1 at room temperature. Furthermore, the ferroelectric engineering is able to effectively suppress the growth of solid electrolyte interphase (SEI) at the interface between polymer electrolytes and Na metal electrodes, and it can also enhance the ion diffusion across the electrolyte-ferroelectric-cathode/anode interfaces. Notably, an extraordinarily high discharge capacity of 160.3 mAh g-1 , with 97.4% in retention, is achieved in the ferroelectric-engineered all-solid-state Na metal cell after 165 cycles at room temperature. Moreover, outstanding stability is demonstrated that a high discharge capacity retention of 86.0% is achieved over 180 full charge/discharge cycles, even though the cell has been aged for 2 months. This work provides new insights in enhancing the long-cyclability and stability of solid-state rechargeable batteries.

3.
J Nanosci Nanotechnol ; 15(9): 7191-4, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716309

ABSTRACT

Monodispersed magnetite (Fe3O4) nanocrystals were synthesized and their electrochemical properties as anode electrode materials for rechargeable lithium ion batteries were measured. The magnetite anodes, in the form of monodispersed nanospheres with average diameters (< 10 nm), show particle size effects. Specifically, the first discharge curves show that the nanocrystals can hold much more Li+ per formula unit than their counterparts in bulk before the reduction begins. The electrolyte decomposition takes place before the reduction reaction is completed. The cycling performance of the Fe3O4 nanocrystals after being heated at 300 degrees C for different lengths of time show that heating can improve the integration of the nanocrystals and increase their capacity retention in consequence.

SELECTION OF CITATIONS
SEARCH DETAIL
...