Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Chem Commun (Camb) ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967500

ABSTRACT

The shift from traditional bulky electronics to smart wearable devices represents a crucial trend in technological advancement. In recent years, the focus has intensified on harnessing thermal and mechanical energy from human activities to power small wearable electronics. This vision has attracted considerable attention from researchers, with an emphasis on the development of suitable materials that can efficiently convert human body energy into usable electrical form. Metal-organic frameworks (MOFs), with their unique tunable structures, large surface areas, and high porosity, emerge as a promising material category for human body energy harvesting due to their ability to be precisely engineered at the molecular level, which allows for the optimization of their properties to suit specific energy harvesting needs. This article explores the progressive development of MOF materials, highlighting their potential in the realm of self-power devices for wearable applications. It first introduces the typical energy harvesting routes that are particularly suitable for harvesting human body energy, including thermoelectric, triboelectric, and piezoelectric techniques. Then, it delves into various research advances that have demonstrated the efficacy of MOFs in capturing and converting body-generated energy into electrical energy, emphasizing on the conceptual design, device fabrication, and applications in medical health monitoring, human-computer interaction, and motion monitoring. Furthermore, it discusses potential future directions for research in MOF-based self-powered devices and outlines perspectives that could drive breakthroughs in the efficiency and practicality of these devices.

2.
Nanomicro Lett ; 16(1): 242, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985378

ABSTRACT

Fire warning is vital to human life, economy and ecology. However, the development of effective warning systems faces great challenges of fast response, adjustable threshold and remote detecting. Here, we propose an intelligent self-powered remote IoT fire warning system, by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films. The flexible films, prepared by a convenient solution mixing, display p-type characteristic with excellent high-temperature stability, flame retardancy and TE (power factor of 239.7 ± 15.8 µW m-1 K-2) performances. The comprehensive morphology and structural analyses shed light on the underlying mechanisms. And the assembled TE devices (TEDs) exhibit fast fire warning with adjustable warning threshold voltages (1-10 mV). Excitingly, an ultrafast fire warning response time of ~ 0.1 s at 1 mV threshold voltage is achieved, rivaling many state-of-the-art systems. Furthermore, TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure. Finally, a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier, analog-to-digital converter and Bluetooth module. By combining TE characteristics, high-temperature stability and flame retardancy with wireless IoT signal transmission, TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.

3.
J Colloid Interface Sci ; 674: 695-701, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38950468

ABSTRACT

Compared to the great achievements in enhancing thermoelectric (TE) performance, little attention is paid to the mechanical (ME) performance of polymer composites although it is a prerequisite for practical applications. However, how to improve a trade-off between TE and ME performance is a great challenge, as the increase in ME performance is always along with the decrease in TE performance and vice versa. Herein, an enhanced trade-off is realized for ionic liquid (IL)-modulated flexible poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/ single-walled carbon nanotube (SWCNT)/polycarbonate (PC) composites. It shows a maximum power factor value of 8.5 ± 2.1 µW m-1 K-2 and a strong mechanical robustness is also achieved for the composite with a fracture strength of 43.4 ± 5.4 MPa and a tensile modulus of 3.8 ± 0.4 GPa. The TE and ME performances are superior to other thermoplastics-based TE composites, and even comparable to some conducting polymers and their composites. The high electrical conductivity of PEDOT:PSS/SWCNT and their strong interfacial interaction with PC are responsible for the enhanced trade-off between ME and TE performances. This work provides a new avenue to endow polymer composites with high TE and ME performances simultaneously and will promote their versatile TE applications.

4.
Front Endocrinol (Lausanne) ; 15: 1411486, 2024.
Article in English | MEDLINE | ID: mdl-38938513

ABSTRACT

Background: Previous studies have confirmed that the triglyceride glucose (TyG) index, recognized as a reliable marker of insulin resistance, is an important risk factor for diabetic kidney disease (DKD). However, it is still unclear whether the DKD risk continues to increase linearly with the elevation of TyG index. This study aimed to thoroughly investigated the intrinsic relationship between TyG index and DKD risk in type 2 diabetes (T2D). Methods: This cross-sectional study included 933 patients with T2D in China, who were categorized into DKD and non-DKD groups and stratified by TyG index levels. Logistic regression analysis identified the independent risk factors for DKD. The association between DKD risk and TyG index was evaluated using the restricted cubic spline (RCS) curves analysis. The R package 'CatPredi' was utilized to determine the optimal cut-off point for the relationship between DKD risk and TyG index, followed by threshold effect analysis. Results: The prevalence of DKD was 33.01%. After adjusting for confounding factors, TyG index was identified as a prominent clinical risk factor for DKD, showing the highest odds ratio (OR 1.57 (1.26 - 1.94), P<0.001). RCS analysis revealed a non-linear relationship with a threshold interval effect between the TyG index and DKD risk. When TyG index ≤ 9.35, DKD risk plateaued at a low level; however, when TyG index > 9.35, DKD risk increased gradually with rising TyG index. Among patients with TyG index > 9.35, each 1-unit increase was associated with a 1.94-fold increased DKD risk (OR=1.94 (1.10 - 3.43), P=0.022). Conclusion: The DKD risk presented a threshold effect with the increase of TyG index, initially stable at a low level, and then gradually rising when the TyG index is above 9.35.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Triglycerides , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Male , Middle Aged , Cross-Sectional Studies , Female , Diabetic Nephropathies/blood , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/diagnosis , Triglycerides/blood , Blood Glucose/analysis , Blood Glucose/metabolism , Risk Factors , China/epidemiology , Aged , Biomarkers/blood , Insulin Resistance , Adult , Nonlinear Dynamics , Prevalence
5.
Adv Mater ; 36(28): e2311926, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703354

ABSTRACT

Traditional lithium-ion battery (LIB) anodes, whether intercalation-type like graphite or alloying-type like silicon, employing a single lithium storage mechanism, are often limited by modest capacity or substantial volume changes. Here, the kesterite multi-metal dichalcogenide (CZTSSe) is introduced as an anode material that harnesses a conversion-alloying hybrid lithium storage mechanism. Results unveil that during the charge-discharge processes, the CZTSSe undergoes a comprehensive phase evolution, transitioning from kesterite structure to multiple dominant phases of sulfides, selenides, metals, and alloys. The involvement of multi-components facilitates electron transport and mitigates swelling stress; meanwhile, it results in formation of abundant defects and heterojunctions, allowing for increased lithium storage active sites and reduced lithium diffusion barrier. The CZTSSe delivers a high specific capacity of up to 2266 mA h g-1 at 0.1 A g-1; while, maintaining a stable output of 116 mA h g-1 after 10 000 cycles at 20 A g-1. It also demonstrates remarkable low-temperature performance, retaining 987 mA h g-1 even after 600 cycles at -40 °C. When employed in full cells, a high specific energy of 562 Wh kg-1 is achieved, rivalling many state-of-the-art LIBs. This research offers valuable insights into the design of LIB electrodes leveraging multiple lithium storage mechanisms.

6.
Asian J Surg ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38762411
7.
Angew Chem Int Ed Engl ; 63(29): e202405357, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38682802

ABSTRACT

The rapid growth of flexible quasi-solid-state thermocells (TECs) provides a fresh way forward for wearable electronics. However, their insufficient mechanical strength and power output still hinder their further applications. This work demonstrates a one-stone-two-birds strategy to synergistically enhance the mechanical and thermoelectrochemical properties of the [Fe(CN)6]3-/4--based TECs. By introducing Hofmeister effect and multiple non-covalent interactions via betaine zwitterions, the mechanical strength of the conventional brittle gelatin hydrogel electrolytes is substantially improved from 50 to 440 kPa, with a high stretchability approaching 250 %. Meanwhile, the betaine zwitterions strongly affect the solvation structure of [Fe(CN)6]3- ions, thus enlarging the entropy difference and raising the thermoelectrochemical Seebeck coefficient from 1.47 to 2.2 mV K-1. The resultant quasi-solid-state TECs exhibit a normalized output power density of 0.48 mW m-2 K-2, showing a notable improvement in overall performance compared to their counterparts without zwitterion regulation. The intrinsic thermo-reversible property also allows the TECs to repeatedly self-recover through sol-gel transformations, ensuring reliable energy output and even recycling of TECs in case of extreme mechanical damages. An energy-autonomous smart glove consisting of eighteen individual TECs is further designed, which can simultaneously monitor the temperature of different positions on any touched object, demonstrating high potential in wearable applications.

8.
Adv Mater ; 36(29): e2400370, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38684215

ABSTRACT

The advancement of aqueous zinc-ion batteries (AZIBs) is often hampered by the dendritic zinc growth and the parasitic side reactions between the zinc anode and the aqueous electrolyte, especially under extreme temperature conditions. This study unveils the performance decay mechanism of zinc anodes in harsh environments, characterized by "dead zinc" at low temperatures and aggravated hydrogen evolution and adverse by-products at elevated temperatures. To address these issues, a temperature self-adaptive electrolyte (TSAE), founded on the competitive coordination principle of co-solvent and anions, is introduced. This electrolyte exhibits a dynamic solvation capability, engendering an inorganic-rich solid electrolyte interface (SEI) at low temperatures while an organic alkyl ether- and alkyl carbonate-containing SEI at elevated temperatures. The self-adaptability of the electrolyte significantly enhances the performance of the zinc anode across a broad temperature range. A Zn//Zn symmetrical cell, based on the TSAE, showcases reversible plating/stripping exceeding 16 800 h (>700 d) at room temperature under 1 mA cm-2 and 1 mAh cm-2, setting a record of lifespan. Furthermore, the TSAE enables stable operation of the zinc full batteries across an ultrawide temperature range of -35 to 75 °C. This work illuminates a pathway for optimizing AZIBs under extreme temperatures by fine-tuning the interfacial chemistry.

9.
Article in English | MEDLINE | ID: mdl-38587364

ABSTRACT

Venous blood collection testing is one of the most commonly used medical diagnostic methods. Compared with conventional venous blood collection, robotic collection can reduce needle-stick injuries, medical staff workload, and infection risk; allow doctor-patient isolation; and improve collection reliability. Existing venous blood collection robots use rigid puncture needles, which can easily puncture the lower wall of blood vessels, causing vessel damage and collection failure. This paper proposes a bionic blood collection strategy based on a composite puncture needle that mimics the structure and function of mosquito mouthparts. A bionic composite puncture needle insertion system with puncture-force sensing was designed, and venipuncture forces were simulated and mathematically modelled. A prototype insertion system was built and used in an experiment, which demonstrated effective composite puncture blood collection and explored the factors influencing puncture force. Puncture force decreases with increased puncture speed and angle and with a decreased needle diameter. This provides a basis for optimising the parameters of blood collection robots.

10.
Nanomicro Lett ; 16(1): 151, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466453

ABSTRACT

Despite notable progress in thermoelectric (TE) materials and devices, developing TE aerogels with high-temperature resistance, superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge. Herein, a highly elastic, flame-retardant and high-temperature-resistant TE aerogel, made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube (PEDOT:PSS/SWCNT) composites, has been fabricated, displaying attractive compression-induced power factor enhancement. The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring. Subsequently, a flexible TE generator is assembled, consisting of 25 aerogels connected in series, capable of delivering a maximum output power of 400 µW when subjected to a temperature difference of 300 K. This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines. Moreover, the designed self-powered wearable sensing glove can realize precise wide-range temperature detection, high-temperature warning and accurate recognition of human hand gestures. The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability. Benefitting from these desirable properties, the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring, industrial overheat warning, waste heat energy recycling and even wearable healthcare.

11.
Bioinspir Biomim ; 19(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38452382

ABSTRACT

The exploration of the planet Mars still is a top priority in planetary science. The Mars surface is extensively covered with soil-like material. Current wheeled rovers on Mars have been occasionally experiencing immobilization instances in unexpectedly weak terrains. The development of Mars rovers adaptable to these terrains is instrumental in improving exploration efficiency. Inspired by locomotion of the desert lizard, this paper illustrates a biomimetic quadruped robot with structures of flexible active spine and toes. By accounting for spine lateral flexion and its coordination with four leg movements, three gaits of tripod, trot and turning are designed. The motions corresponding to the three gaits are conceptually and numerically analyzed. On the granular terrains analog to Martian surface, the gasping forces by the active toes are estimated. Then traversing tests for the robot to move on Martian soil surface analog with the three gaits were investigated. Moreover, the traversing characteristics for Martian rocky and slope surface analog are analyzed. Results show that the robot can traverse Martian soil surface analog with maximum forward speed 28.13 m s-1turning speed 1.94° s-1and obstacle height 74.85 mm. The maximum angle for climbing Martian soil slope analog is 28°, corresponding slippery rate 76.8%. It is predicted that this robot can adapt to Martian granular rough terrain with gentle slopes.


Subject(s)
Mars , Robotics , Extraterrestrial Environment , Biomimetics , Soil
12.
J Clin Rheumatol ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38389131

ABSTRACT

BACKGROUND: Pneumocystis jirovecii pneumonia (PJP) is a life-threatening opportunistic infection in immunocompromised children with systemic lupus erythematosus (SLE). Prophylaxis against PJP in high-risk children is crucial, but the risk factors for PJP in children with SLE are not adequately characterized. This study sought to identify the risk factors for PJP in long-term glucocorticoid-treated pediatric SLE patients. METHODS: This study encompassed 71 treatment episodes involving 64 children with prolonged (≥4 weeks) high-dose (≥20 mg/d prednisone) steroid regimens. Fourteen treatment episodes involved the PJP, whereas others did not. Risk factors for PJP were assessed through Cox regression. The predictive value of these factors was evaluated using receiver operating characteristic curves. The incidence of PJP in different risk groups was compared using the Kaplan-Meier method. RESULTS: The creatinine (hazard ratio, 1.009; 95% confidence interval [CI], 1.001-1.017; p = 0.021) and the lowest lymphocyte count (hazard ratio, 0.007; 95% CI, 0.000-0.373; p = 0.014) were independent risk factors for PJP in children with SLE. The receiver operating characteristic curve showed that using creatinine greater than 72.5 µmol/L and the lowest lymphocyte count less than 0.6 × 109/L as risk predictors for PJP resulted in an area under the curve value of 0.934 (95% CI, 0.870-0.997; p < 0.001). The study revealed a significant increase in PJP prevalence (p < 0.001) in children with elevated creatinine levels and low lymphocyte count. CONCLUSIONS: Elevated levels of creatinine and decreased lymphocyte count are identified as distinct risk factors for PJP in children with SLE who receive prolonged high-dose steroid therapy.

13.
Mater Horiz ; 11(7): 1679-1688, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38305351

ABSTRACT

Due to the prevalence of electronic devices, intelligent sensors have attracted much interest for the detecting and providing alarms with respect to indoor electrical safety. Nonetheless, how to effectively identify various indoor electrical safety hazards remains a challenge. In this study, we fabricated single-walled carbon nanotube/poly(3-hexylthiophene-2,5-diyl) (SWCNT/P3HT) composites with exceptional bifunctional thermoelectric and photoelectric responses. Through synergy of the thermo-/photoelectric effects, the composites yielded greatly enhanced output voltages compared with the use of thermoelectric effects alone. Interestingly, modes of heat transfer can be effectively distinguished using the nominal Seebeck coefficients. Based on the remarkable output voltages and deviations in the nominal Seebeck coefficients, we developed indoor intelligent sensors capable of effectively identifying and monitoring diverse indoor electrical conditions, including electrical overheating, fire, and air conditioning flow. This pioneering investigation proposes a novel avenue for designing intelligent sensors that can recognize heat transfer modes and hence effectively monitor indoor electrical safety hazards.

14.
Urol Int ; 108(2): 118-127, 2024.
Article in English | MEDLINE | ID: mdl-38185112

ABSTRACT

INTRODUCTION: Overactive bladder symptoms (OABSs) affect patients' quality of life (QOL) worldwide. This pooled analysis compared the efficacy and safety of mirabegron add-on tamsulosin with those of tamsulosin add-on placebo in OABS treatment. METHODS: PubMed, Embase, MEDLINE, and the Cochrane Controlled Trial Register databases were searched for randomized controlled trials (RCTs) examining the efficacy of mirabegron add-on therapy to tamsulosin in the treatment of OABS. Moreover, references from the selected studies were screened. Review Manager 5.4 was used to analyze data. RESULTS: Four RCTs involving 1,397 patients with OABS were selected. Of the total, 697 patients receiving mirabegron add-on tamsulosin constituted the experimental group, and 700 patients receiving tamsulosin add-on placebo constituted the control group. The efficacy endpoints were as follows: mean number of micturition per day (mean difference [MD] = -0.26, 95% confidence interval [CI] = -0.41 to -0.10, p = 0.0001), urgency episodes per day (MD = -0.67, 95% CI = -1.02 to -0.32, p = 0.0002), urgency urinary incontinence (UUI) episodes per day (MD = -0.42, 95% CI = -0.66 to -0.19, p = 0.0005), mean volume voided/micturition (MD = 10.84, 95% CI = 4.97-16.71, p = 0.0003), total International Prostate Symptom Score (IPSS) (MD = -2.01, 95% CI = -4.02 to -0.01, p = 0.05), and IPSS QOL index (MD = -0.65, 95% CI = -0.94 to -0.35, p < 0.0001). Mirabegron therapy, an add-on therapy to tamsulosin, was effective in treating patients with OABS. Moreover, mirabegron might reduce the total IPSS (MD = -2.01, 95% CI = -4.02 to -0.01, p = 0.05). The safety endpoint, treatment-emergent adverse events (odds ratio = 0.94, 95% CI = 0.78-1.13, p = 0.49), suggested that although mirabegron was well-tolerated, it possibly increased the post-void residual urine volume (MD = 10.28, 95% CI = 1.82-18.75, p = 0.02). CONCLUSION: Combination therapy using mirabegron and tamsulosin may be effective in treating patients with non-neurogenic OABS in terms of UUI episodes, total IPSS, and IPSS QOL index. However, its effectiveness must be verified by analyzing additional factors for OABS through further RCTs.

15.
Small ; 20(10): e2306211, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37875779

ABSTRACT

The stability of aqueous Zn-ion batteries (AZIBs) is detrimentally influenced by the formation of Zn dendrites and the occurrence of parasitic side reactions at the Zn metal anode (ZMA)-electrolyte interface. The strategic manipulation of the preferential crystal orientation during Zn2+ plating serves as an essential approach to mitigate this issue. Here, Zn aspartate (Zn-Asp), an electrolyte additive for AZIBs, is introduced not only to optimize the solvation structure of Zn2+ , but also to crucially promote preferential Zn2+ plating on the (002) crystal plane of ZMA. As a result, both side reactions and Zn dendrites are effectively inhibited, ensuring an anode surface free of both dendrites and by-products. The implementation of Zn-Asp leads to significant enhancements in both Zn||Zn symmetric and Zn||Ti batteries, which demonstrate robust cyclability of over 3200 h and high Coulombic efficiency of 99.29%, respectively. Additionally, the Zn||NaV3 O8 ·1.5H2 O full battery exhibits remarkable rate capability, realizing a high capacity of 240.77 mA h g-1 at 5 A g-1 , and retains 92.7% of its initial capacity after 1000 cycles. This research underscores the vital role of electrolyte additives in regulating the preferential crystal orientation of ZMA, thereby contributing to the development of high-performing AZIBs.

16.
Carbohydr Res ; 535: 109011, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150753

ABSTRACT

In this study, a pure Grifola frondosa polysaccharide (GFP-1) was extracted and purified from Grifola frondosa. By HPLC, GC-MS, FT-IR, and NMR analysis, GFP-1 was determined to be a starch-like polysaccharide with an average molecular weight of 3370 kDa. It included three monosaccharides, i.e., glucose, galactose, and mannose. The backbone of GFP-1 consisted of →4)-α-Glcp-(1→ and →4,6)-α-Glcp-(1 â†’ . The side branches were composed of →6)-α-Galp-(1→, α-Glcp-(1→, and a small amount of α-Manp-(1 â†’ . By using a cyclophosphamide (CTX)-induced immunosuppressed mice model, we evaluated the immunomodulatory activity of GFP-1. The results showed that GFP-1 increased the thymic and spleen indices, promoted the level of IgG and IgA in serum, and activated the mitogen-activated protein kinase (MAPK) pathway in CTX-induced mice. Also, GFP-1 significantly promoted the mRNA expression of intestinal barrier factors and protected intestinal structural integrity in immunosuppressed mice. In conclusion, the data presented here suggested that GFP-1 might be a potential immune-enhancing supplement.


Subject(s)
Grifola , Starch , Animals , Mice , Grifola/chemistry , Spectroscopy, Fourier Transform Infrared , Polysaccharides/pharmacology , Polysaccharides/chemistry , Cyclophosphamide/adverse effects , Immunosuppression Therapy
17.
ACS Nano ; 17(22): 22478-22487, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37934024

ABSTRACT

The growing global demand for sustainable and cost-effective energy storage solutions has driven the rapid development of zinc batteries. Despite significant progress in recent years, enhancing the energy density of zinc batteries remains a crucial research focus. One prevalent strategy involves the development of high-capacity and/or high-voltage cathode materials. CuS, a commonly used electrode material, exhibits a two-electron transfer mechanism; however, the reduced sulfion lacks electrochemical activity and thereby limits its discharge capacity and redox potential. In this study, we activate a CuS cathode to form a high-valence Cu2+&S compound using a deep-eutectic-solvent (DES)-based electrolyte. The presence of Cl- in the DES-based electrolyte is crucial to the reversibility of the redox chemistry, and the liquid-phase-involved electrochemical process facilitates redox kinetics. A four-electron transfer pathway involving five reaction steps is identified for the CuS electrode, which unleashes the full electrochemical activity of the S element. Consequently, the full cell delivers a large discharge capacity of ∼800 mAh g-1 at 0.2 A g-1 and yields a high discharge plateau starting at 1.58 V, contributing to energy densities of up to 650 Wh kg-1 (based on CuS). This work offers a promising approach to developing high-energy zinc batteries.

18.
Nat Commun ; 14(1): 6738, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875485

ABSTRACT

Aqueous copper-based batteries have many favourable properties and have thus attracted considerable attention, but their application is limited by their low operating voltage originating from the high potential of copper negative electrode (0.34 V vs. standard hydrogen electrode). Herein, we propose a coordination strategy for reducing the intrinsic negative electrode redox potential in aqueous copper-based batteries and thus improving their operating voltage. This is achieved by establishing an appropriate coordination environment through the electrolyte tailoring via Cl- ions. When coordinated with chlorine, the intermediate Cu+ ions in aqueous electrolytes are successfully stabilized and the electrochemical process is decoupled into two separate redox reactions involving Cu2+/Cu+ and Cu+/Cu0; Cu+/Cu0 results in a redox potential approximately 0.3 V lower than that for Cu2+/Cu0. Compared to the coordination with water, the coordination with chlorine also results in higher copper utilization, more rapid redox kinetics, and superior cycle stability. An aqueous copper-chlorine battery, harnessing Cl-/Cl0 redox reaction at the positive electrode, is discovered to have a high discharge voltage of 1.3 V, and retains 77.4% of initial capacity after 10,000 cycles. This work may open up an avenue to boosting the voltage and energy of aqueous copper batteries.

19.
Sci Bull (Beijing) ; 68(24): 3261-3277, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37722927

ABSTRACT

Historically, fire disasters have killed numerous human lives, and caused tremendous property loss. Fire warning systems play a vital role in predicting fire risks, and are strongly desired to effectively prevent the disaster occurrence and significantly reduce the loss. Among the developed fire warning systems, thermoelectrics (TEs) and thermocells (TECs)-based fire warning materials are extremely important and indispensable in future research, owing to their unique capability of direct conversion between heat and electricity. Here, we present this review of the recent progress of TEs and TECs in fire warning field. Firstly, a brief introduction of existing fire warning systems is provided, including the mechanisms and features of various types. Then, the mechanisms of electronic TE (eTE), ionic TE (iTE) and TEC are elucidated. Next, the basic principles for the material preparation and device fabrication are discussed in their dimension sequence. Subsequently, some important advances or examples of TE fire warnings are highlighted in details. Finally, the challenges and prospects are outlooked.

20.
Nanomicro Lett ; 15(1): 196, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37566154

ABSTRACT

The evolution of wearable technology has prompted the need for adaptive, self-healable, and energy-autonomous energy devices. This study innovatively addresses this challenge by introducing an MXene-boosted hydrogel electrolyte, which expedites the assembly process of flexible thermocell (TEC) arrays and thus circumvents the complicated fabrication of typical wearable electronics. Our findings underscore the hydrogel electrolyte's superior thermoelectrochemical performance under substantial deformations and repeated self-healing cycles. The resulting hydrogel-based TEC yields a maximum power output of 1032.1 nW under the ΔT of 20 K when being stretched to 500% for 1000 cycles, corresponding to 80% of its initial state; meanwhile, it sustains 1179.1 nW under the ΔT of 20 K even after 60 cut-healing cycles, approximately 92% of its initial state. The as-assembled TEC array exhibits device-level self-healing capability and high adaptability to human body. It is readily applied for touch-based encrypted communication where distinct voltage signals can be converted into alphabet letters; it is also employed as a self-powered sensor to in-situ monitor a variety of body motions for complex human actions. The swift assembly approach, combined with the versatile functionality of the TEC device, paves the way for future advancements in wearable electronics targeting at fitness monitoring and human-machine interfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...