Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
PLoS Negl Trop Dis ; 18(5): e0012159, 2024 May.
Article in English | MEDLINE | ID: mdl-38739673

ABSTRACT

BACKGROUND: Rodents are recognized as the hosts of many vector-borne bacteria and protozoan parasites and play an important role in their transmission and maintenance. Intensive studies have focused on their infections in vectors, especially in ticks, however, vector-borne bacterial and protozoan infections in rodents are poorly understood although human cases presenting with fever may due to their infection have been found. METHODS: From May to October 2019, 192 wild rodents were trapped in wild environment of Guangxi Province, and the spleen samples were collected to reveal the presence of vector-borne bacterial and protozoan infections in them. The microorganisms in rodents were identified by detecting their DNA using (semi-)nested PCR. All the PCR products of the expected size were subjected to sequencing, and then analyzed by BLASTn. Furthermore, all the recovered sequences were subjected to nucleotide identity and phylogenetic analyses. RESULTS: As a result, 192 rodents representing seven species were captured, and Bandicota indica were the dominant species, followed by Rattus andamanensis. Based on the (semi-)nested PCR, our results suggested that Anaplasma bovis, Anaplasma capra, Anaplasma ovis, Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis", "Candidatus E. hainanensis", "Candidatus E. zunyiensis", three uncultured Ehrlichia spp., Bartonella coopersplainsensis, Bartonella tribocorum, Bartonella rattimassiliensis, Bartonella silvatica, two uncultured Bartonella spp., Babesia microti and diverse Hepatozoon were identified in six rodent species. More importantly, six species (including two Anaplasma, two Bartonella, "Ca. N. mikurensis" and Bab. microti) are zoonotic pathogens except Anaplasma bovis and Anaplasma ovis with zoonotic potential. Furthermore, dual infection was observed between different microorganisms, and the most common type of co-infection is between "Ca. N. mikurensis" and other microorganisms. Additionally, potential novel Bartonella species and Hepatozoon species demonstrated the presence of more diverse rodent-associated Bartonella and Hepatozoon. CONCLUSIONS: The results in this work indicated great genetic diversity of vector-borne infections in wild rodents, and highlighted the potential risk of human pathogens transmitted from rodents to humans through vectors.


Subject(s)
Genetic Variation , Rodentia , Animals , China/epidemiology , Rodentia/microbiology , Rodentia/parasitology , Phylogeny , Animals, Wild/parasitology , Animals, Wild/microbiology , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/classification , Vector Borne Diseases/transmission , Vector Borne Diseases/microbiology , Vector Borne Diseases/parasitology , Vector Borne Diseases/epidemiology , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Rats
2.
World J Gastrointest Oncol ; 16(5): 1965-1994, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764819

ABSTRACT

BACKGROUND: Yigong San (YGS) is a representative prescription for the treatment of digestive disorders, which has been used in clinic for more than 1000 years. However, the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear. AIM: To explore the mechanism of YGS anti-gastric cancer and immune regulation. METHODS: Firstly, collect the active ingredients and targets of YGS, and the differentially expressed genes of gastric cancer. Secondly, constructed a protein-protein interaction network between the targets of drugs and diseases, and screened hub genes. Then the clinical relevance, mutation and repair, tumor microenvironment and drug sensitivity of the hub gene were analyzed. Finally, molecular docking was used to verify the binding ability of YGS active ingredient and hub genes. RESULTS: Firstly, obtained 55 common targets of gastric cancer and YGS. The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6, EGFR, MMP2, MMP9 and TGFB1 as the hub genes. The 5 hub genes were involved in gastric carcinogenesis, staging, typing and prognosis, and their mutations promote gastric cancer progression. Finally, molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets. CONCLUSION: YGS has the effect of anti-gastric cancer and immune regulation.

3.
World J Stem Cells ; 16(5): 525-537, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817335

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality rates. The use of pluripotent stem cells holds great promise for the treatment of AKI. Urine-derived stem cells (USCs) are a novel and versatile cell source in cell-based therapy and regenerative medicine that provide advantages of a noninvasive, simple, and low-cost approach and are induced with high multidifferentiation potential. Whether these cells could serve as a potential stem cell source for the treatment of AKI has not been determined. AIM: To investigate whether USCs can serve as a potential stem cell source to improve renal function and histological structure after experimental AKI. METHODS: Stem cell markers with multidifferentiation potential were isolated from human amniotic fluid. AKI severe combined immune deficiency (SCID) mice models were induced by means of an intramuscular injection with glycerol. USCs isolated from human-voided urine were administered via tail veins. The functional changes in the kidney were assessed by the levels of blood urea nitrogen and serum creatinine. The histologic changes were evaluated by hematoxylin and eosin staining and transferase dUTP nick-end labeling staining. Meanwhile, we compared the regenerative potential of USCs with bone marrow-derived mesenchymal stem cells (MSCs). RESULTS: Treatment with USCs significantly alleviated histological destruction and functional decline. The renal function was rapidly restored after intravenous injection of 5 × 105 human USCs into SCID mice with glycerol-induced AKI compared with injection of saline. Results from secretion assays conducted in vitro demonstrated that both stem cell varieties released a wide array of cytokines and growth factors. This suggests that a mixture of various mediators closely interacts with their biochemical functions. Two types of stem cells showed enhanced tubular cell proliferation and decreased tubular cell apoptosis, although USC treatment was not more effective than MSC treatment. We found that USC therapy significantly improved renal function and histological damage, inhibited inflammation and apoptosis processes in the kidney, and promoted tubular epithelial proliferation. CONCLUSION: Our study demonstrated the potential of USCs for the treatment of AKI, representing a new clinical therapeutic strategy.

4.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Article in English | MEDLINE | ID: mdl-38725860

ABSTRACT

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Subject(s)
Glioblastoma , STAT3 Transcription Factor , Signal Transduction , Tetraspanins , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , STAT3 Transcription Factor/metabolism , Tetraspanins/metabolism , Tetraspanins/genetics , Cell Line, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Animals , Cell Proliferation/genetics , Exosomes/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Movement/genetics , Disease Progression , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice
5.
World J Clin Cases ; 12(11): 1980-1989, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38660556

ABSTRACT

BACKGROUND: This case report presents the rare occurrence of hematochezia due to an internal iliac artery aneurysm leading to an arterioenteric fistula, expanding the differential diagnosis for gastrointestinal bleeding. It emphasizes the importance of considering vascular origins in cases of atypical hematochezia, particularly in the absence of common gastrointestinal causes, and highlights the role of imaging and multidisciplinary management in diagnosing and treating such unusual presentations. CASE SUMMARY: A 75-year-old man with a history of hypertension presented with 12 d of hematochezia, experiencing bloody stools 7-8 times per day. Initial computed tomography (CT) scans revealed an aneurysmal rupture near the right internal iliac artery with suspected hematoma development. Hemoglobin levels progressively decreased to 7 g/dL. Emergency arterial angiography and iliac artery-covered stent placement were performed, followed by balloon angioplasty. Despite initial stabilization, minor rectal bleeding and abdominal pain persisted, leading to further diagnostic colonoscopy. This identified a neoplasm and potential perforation at the proximal rectum. An exploratory laparotomy confirmed the presence of a hematoma and an aneurysm invading the rectal wall, necessitating partial rectal resection, intestinal anastomosis, and ileostomy. Postoperative recovery was successful, with no further bleeding incidents and normal follow-up CT and colonoscopy results after six months. CONCLUSION: In cases of unusual gastrointestinal bleeding, it is necessary to consider vascular causes for effective diagnosis and intervention.

6.
Cell Death Discov ; 10(1): 134, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472168

ABSTRACT

Endoplasmic reticulum (ER) stress can trigger various cell death mechanisms beyond apoptosis, providing promise in cancer treatment. Oncosis, characterized by cellular swelling and increased membrane permeability, represents a non-apoptotic form of cell death. In our study, we discovered that Arnicolide D (AD), a natural sesquiterpene lactone compound, induces ER stress-mediated oncosis in hepatocellular carcinoma (HCC) cells, and this process is reactive oxygen species (ROS)-dependent. Furthermore, we identified the activation of the PERK-eIF2α-ATF4-CHOP pathway during ER stress as a pivotal factor in AD-induced oncosis. Notably, the protein synthesis inhibitor cycloheximide (CHX) was found to effectively reverse AD-induced oncosis, suggesting ATF4 and CHOP may hold crucial roles in the induction of oncosis by AD. These proteins play a vital part in promoting protein synthesis during ER stress, ultimately leading to cell death. Subsequent studies, in where we individually or simultaneously knocked down ATF4 and CHOP in HCC cells, provided further confirmation of their indispensable roles in AD-induced oncosis. Moreover, additional animal experiments not only substantiated AD's ability to inhibit HCC tumor growth but also solidified the essential role of ER stress-mediated and ROS-dependent oncosis in AD's therapeutic potential. In summary, our research findings strongly indicate that AD holds promise as a therapeutic agent for HCC by its ability to induce oncosis.

7.
World J Gastrointest Oncol ; 16(1): 30-50, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38292852

ABSTRACT

BACKGROUND: Pachymic acid (PA) is derived from Poria cocos. PA has a variety of pharmacological and inhibitory effects on various tumors. However, the mechanism of action of PA in gastric cancer (GC) remains unclear. AIM: To investigate the mechanism of PA in treating GC via the combination of network pharmacology and experimental verification. METHODS: The GeneCards and OMIM databases were used to derive the GC targets, while the Pharm Mapper database provided the PA targets. Utilizing the STRING database, a protein-protein interaction network was constructed and core targets were screened. The analyses of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis were conducted, and molecular docking and clinical correlation analyses were performed on the core targets. Ultimately, the network pharmacology findings were validated through in vitro cell assays, encompassing assessments of cell viability, apoptosis, cell cycle, cloning, and western blot analysis. RESULTS: According to network pharmacology analysis, the core targets were screened, and the PI3K/AKT signaling pathway is likely to be the mechanism by which PA effectively treats GC, according to KEGG enrichment analysis. The experimental findings showed that PA could control PI3K/AKT signaling to prevent GC cell proliferation, induce apoptosis, and pause the cell cycle. CONCLUSION: Network pharmacology demonstrated that PA could treat GC by controlling a variety of signaling pathways and acting on a variety of targets. This has also been supported by in vitro cell studies, which serve as benchmarks for further research.

8.
World J Gastrointest Oncol ; 15(11): 1835-1851, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38077642

ABSTRACT

Cancer seriously endangers human health. Gastrointestinal cancer is the most common and major malignant tumor, and its morbidity and mortality are gradually increasing. Although there are effective treatments such as radiotherapy and chemotherapy for gastrointestinal tumors, they are often accompanied by serious side effects. According to the traditional Chinese medicine and food homology theory, many materials are both food and medicine. Moreover, food is just as capable of preventing and treating diseases as medicine. Medicine and food homologous herbs not only have excellent pharmacological effects and activities but also have few side effects. As a typical medicinal herb with both medicinal and edible uses, some components of ginger have been shown to have good efficacy and safety against cancer. A mass of evidence has also shown that ginger has anti-tumor effects on digestive tract cancers (such as gastric cancer, colorectal cancer, liver cancer, laryngeal cancer, and pancreatic cancer) through a variety of pathways. The aim of this study is to investigate the mechanisms of action of the main components of ginger and their potential clinical applications in treating gastrointestinal tumors.

9.
Molecules ; 28(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067432

ABSTRACT

Due to its intricate heterogeneity, high invasiveness, and poor prognosis, triple-negative breast cancer (TNBC) stands out as the most formidable subtype of breast cancer. At present, chemotherapy remains the prevailing treatment modality for TNBC, primarily due to its lack of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth receptor 2 (HER2). However, clinical chemotherapy for TNBC is marked by its limited efficacy and a pronounced incidence of adverse effects. Consequently, there is a pressing need for novel drugs to treat TNBC. Given the rich repository of diverse natural compounds in traditional Chinese medicine, identifying potential anti-TNBC agents is a viable strategy. This study investigated lasiokaurin (LAS), a natural diterpenoid abundantly present in Isodon plants, revealing its significant anti-TNBC activity both in vitro and in vivo. Notably, LAS treatment induced cell cycle arrest, apoptosis, and DNA damage in TNBC cells, while concurrently inhibiting cell metastasis. In addition, LAS effectively inhibited the activation of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway and signal transducer and activator of transcription 3 (STAT3), thus establishing its potential for multitarget therapy against TNBC. Furthermore, LAS demonstrated its ability to reduce tumor growth in a xenograft mouse model without exerting detrimental effects on the body weight or vital organs, confirming its safe applicability for TNBC treatment. Overall, this study shows that LAS is a potent candidate for treating TNBC.


Subject(s)
Diterpenes , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/pathology , Phosphatidylinositol 3-Kinases , Cell Proliferation , Cell Line, Tumor , Diterpenes/pharmacology , Apoptosis , Mammals
10.
World J Clin Cases ; 11(35): 8343-8349, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38130619

ABSTRACT

BACKGROUND: Synchronous colorectal carcinomas (SCRC) are two or more primary colorectal carcinomas identified simultaneously or within 6 mo of the initial presentation in a single patient. Their incidence is low and the number of pathological types of SCRC is usually no more than two. It is very unusual that the pathological findings of a patient with SCRC show more than two different pathological subtypes. Here, we report a rare case of SCRC with three pathological subtypes. CASE SUMMARY: A 75-year-old woman who had no previous medical history or family history was admitted to the hospital because of intermittent hematochezia for more than a month. Colonoscopy displayed an irregularly shaped neoplasm of the rectum, a tumor-like lesion causing intestinal stenosis in the descending colon, and a polypoidal neoplasm in the ileocecum. Subsequently, she underwent total colectomy, abdominoperineal resection for rectal cancer, and ileostomy. After operation, the pathological report showed three pathological subtypes including well-differentiated adenocarcinoma of the ascending colon, moderately differentiated adenocarcinoma of the descending colon, and mucinous adenocarcinoma of the rectum. She is now recovering well and continues to be closely monitored during follow-up. CONCLUSION: Preoperative colonoscopy examination, imaging examination, and extensive intraoperative exploration play important roles in reducing the number of missed lesions.

11.
Molecules ; 28(21)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37959859

ABSTRACT

Pyrazine is a six-membered heterocyclic ring containing nitrogen, and many of its derivatives are biologically active compounds. References have been downloaded through Web of Science, PubMed, Science Direct, and SciFinder Scholar. The structure, biological activity, and mechanism of natural product derivatives containing pyrazine fragments reported from 2000 to September 2023 were reviewed. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. The results of research work show that pyrazine-modified natural product derivatives have a wide range of biological activities, including anti-inflammatory, anticancer, antibacterial, antiparasitic, and antioxidant activities. Many of these derivatives exhibit stronger pharmacodynamic activity and less toxicity than their parent compounds. This review has a certain reference value for the development of heterocyclic compounds, especially pyrazine natural product derivatives.


Subject(s)
Biological Products , Pyrazines , Pyrazines/pharmacology , Pyrazines/chemistry , Chemistry, Pharmaceutical , Anti-Inflammatory Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology
12.
Infect Genet Evol ; 115: 105506, 2023 11.
Article in English | MEDLINE | ID: mdl-37742909

ABSTRACT

China was affected severely by tick-borne rickettsiosis, and more than 10 Rickettsia species pathogenic to humans have been identified. In recent years, several Rickettsia members, with unknown pathogenicity, firstly identified abroad have been found in China. In this study, parasitic and questing ticks were recovered from two sampling sites in Hebei, China. Specific primers targeting outer membrane protein B (ompB) gene were designed to test the presence of Rickettsia canadensis by nested Polymerase Chain Reaction (PCR). As a result, a total of 428 ticks, including 232 ticks (including 230 Haemaphysalis longicornis and two H. japonica) from Laiyuan County and 196 (H. longicornis) from Luanping County, were collected. Sequencing of PCR products with the expected size and subsequently BLAST showed that 38H. longicornis ticks tested positive for R. canadensis, with an overall positive rate of 8.8%. In addition, 800-bp ompB gene and nearly complete citrate synthase (gltA) gene were recovered from six randomly selected positive samples to better understand their genetic characteristics. Nucleotide identity and phylogenetic analyses showed that R. canadensis presented geographical clustering with evidence that variants identified in the current study presented closer genetic relationship with others identified in Asian than those found in North America. In addition, epidemiological data suggested that H. longicornis may be the competent vector, and more attention should be paid to R. canadensis due to its zoonotic potential. In sum, R. canadensis was confirmed to be present in Hebei Province, China, and its surveillance in ticks should be strengthened due to potential pathogenicity, higher positive rate in ticks and wide distribution of possible vector tick species.


Subject(s)
Ixodidae , Rickettsia , Ticks , Humans , Animals , Ticks/microbiology , Phylogeny , Rickettsia/genetics , China/epidemiology
13.
World J Gastroenterol ; 29(29): 4542-4556, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37621755

ABSTRACT

BACKGROUND: Gastric carcinoma (GC) is the third most frequent cause of cancer-related death, highlighting the pressing need for novel clinical treatment options. In this regard, microRNAs (miRNAs) have emerged as a promising therapeutic strategy. Studies have shown that miRNAs can regulate related signaling pathways, acting as tumor suppressors or tumor promoters. AIM: To explore the effect of miR-204-3p on GC cells. METHODS: We measured the expression levels of miR-204-3p in GC cells using quantitative real-time polymerase chain reaction, followed by the delivery of miR-204-3p overexpression and miR-204-3p knockdown vectors into GC cells. CCK-8 was used to detect the effect of miR-204-3p on the proliferation of GC cells, and the colony formation ability of GC cells was detected by the clonal formation assay. The effects of miR-204-3p on GC cell cycle and apoptosis were detected by flow cytometry. The BABL/c nude mouse subcutaneous tumor model using MKN-45 cells was constructed to verify the effect of miR-204-3p on the tumorigenicity of GC cells. Furthermore, the study investigated the effects of miR-204-3p on various proteins related to the MAPK signaling pathway, necroptosis signaling pathway and apoptosis signaling pathway on GC cells using Western blot techniques. RESULTS: Firstly, we found that the expression of miR-204-3p in GC was low. When treated with the lentivirus overexpression vector, miR-204-3p expression significantly increased, but the lentivirus knockout vector had no significant effect on miR-204-3p. In vitro experiments confirmed that miR-204-3p overexpression inhibited GC cell viability, promoted cell apoptosis, blocked the cell cycle, and inhibited colony formation ability. In vivo animal experiments confirmed that miR-204-3p overexpression inhibited subcutaneous tumorigenesis ability in BABL/c nude mice. Simultaneously, our results verified that miR-204-3p overexpression can inhibit GC cell proliferation by inhibiting protein expression levels of KRAS and p-ERK1/2 in the MAPK pathway, as well as inhibiting protein expression levels of p-RIP1 and p-MLK1 in the necroptosis pathway to promote the BCL-2/BAX/Caspase-3 apoptosis pathway. CONCLUSION: MiR-204-3p overexpression inhibited GC cell proliferation by inhibiting the MAPK pathway and necroptosis pathway to promote apoptosis of GC cells. Thus, miR-204-3p may represent a new potential therapeutic target for GC.


Subject(s)
MicroRNAs , Necroptosis , Signal Transduction , Stomach Neoplasms , Animals , Mice , Apoptosis , Carcinoma/pathology , Cell Division , Disease Models, Animal , Mice, Nude , MicroRNAs/genetics , Stomach Neoplasms/pathology
14.
Huan Jing Ke Xue ; 44(1): 463-472, 2023 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-36635834

ABSTRACT

The optimization of annual straw management can improve the yield, income, and carbon and nitrogen efficiency of wheat-maize double cropping systems. Based on a long-term positioning trial started in 2012, five straw management methods were considered, C100 (100% return), C75 (75% return+25% harvest), C50 (50% return+50% harvest), C25 (25% return+75% harvest), and C0 (100% harvest). We analyzed the effects of farmland carbon and nitrogen inputs and their ratios on crop yield, carbon and nitrogen use efficiency, and economic benefits in wheat and maize anniversaries with different straw managements. The results showed that: ① the amount of straw returning to the field resulted in a significant difference in carbon and nitrogen input. The annual carbon and nitrogen inputs from crop residues decreased by 1.76 t·hm-2 and 34.28 kg·hm-2, respectively, with a 25% reduction in straw returning. The C/N ratios under the C100-C0 treatment were 18.62, 17.03, 15.64, 12.54, and 9.61, respectively. ② Grain yield first increased and then decreased with the decrease in the C/N input ratio, and the effect of straw management on wheat yield was greater than that on maize. Compared with that under C100 and C0, the average grain yield of wheat and maize under the C50 treatment increased by 13.34%-13.67% and 16.10%-17.71%, respectively, and the total grain yield of wheat and maize increased by 14.98% and 15.68%. ③ The annual grain yield and carbon agronomy efficiency were the best with the C/N input ratio of 15.64 (in the C50 treatment), which were 15.71% and 0.29 kg·kg-1, respectively. The carbon production efficiency continued to increase with the decrease in the C/N input ratio, and there was a significant negative correlation between them. The nitrogen production efficiency increased first and then decreased with the decrease in the C/N input ratio. The nitrogen production efficiency of the C50 treatment was the highest (0.64 kg·kg-1), which was significantly higher than that of C100 by 32.63%. ④ The C50 treatment had the highest economic income and net income, which were 46200 yuan·hm-2 and 33400 yuan·hm-2, respectively. Compared with that of C100, the economic income of grain and straw feed increased by 5600 yuan·hm-2 and 3200 yuan·hm-2, respectively. In conclusion, the optimal C/N input ratio can be achieved by optimized straw management; 50% straw returning and 50% harvest in a wheat-maize double-cropping intensive production system can promote carbon agricultural efficiency and nitrogen production efficiency and obtain the maximum grain yield and economic benefits.


Subject(s)
Carbon , Soil , Carbon/analysis , Soil/chemistry , Zea mays , Triticum , Nitrogen , Fertilizers , Agriculture/methods , Edible Grain/chemistry , China
15.
Cancer Drug Resist ; 6(4): 729-747, 2023.
Article in English | MEDLINE | ID: mdl-38239395

ABSTRACT

The induction of cell death is recognized as a potent strategy for cancer treatment. Apoptosis is an extensively studied form of cell death, and multiple anticancer drugs exert their therapeutic effects by inducing it. Nonetheless, apoptosis evasion is a hallmark of cancer, rendering cancer cells resistant to chemotherapy drugs. Consequently, there is a growing interest in exploring novel non-apoptotic forms of cell death, such as ferroptosis, necroptosis, pyroptosis, and paraptosis. Natural compounds with anticancer properties have garnered significant attention due to their advantages, including a reduced risk of drug resistance. Over the past two decades, numerous natural compounds have been discovered to exert anticancer and anti-resistance effects by triggering these four non-apoptotic cell death mechanisms. This review primarily focuses on these four non-apoptotic cell death mechanisms and their recent advancements in overcoming drug resistance in cancer treatment. Meanwhile, it highlights the role of natural compounds in effectively addressing cancer drug resistance through the induction of these forms of non-apoptotic cell death.

16.
Front Microbiol ; 13: 1039665, 2022.
Article in English | MEDLINE | ID: mdl-36504836

ABSTRACT

Rodents are the primary natural reservoirs of Bartonella spp., and some of which are zoonotic causative agents. Hence, surveillance of Bartonella sp. infection in rodents is very important for the prevention of human bartonellosis caused by them. In this study, rodents were captured, and their spleen samples were collected for Bartonella sp. DNA detection and identification by amplifying the 16S rRNA, gltA, and ftsz genes using semi-nested polymerase chain reaction (PCR). The results indicated that Bartonella sp. DNA was detected in seven Rattus norvegicus individuals with a detection rate of 6.7% in Chengde City and bacterial DNA in 31 Apodemus agrarius individuals with a detection rate of 28.4% in Handan City. The DNA detection rate across the genders and ages of rodents was not found to be statistically significant. Furthermore, sequence analysis of the above-mentioned three genes demonstrated that at least eight Bartonella species were circulating in Hebei Province, of which three, including Bartonella rattimassiliensis, Bartonella grahamii, and Bartonella tribocorum, are human pathogens, thus suggesting the existence of a major public health risk. Overall, these results revealed the detection rate and genetic diversity of Bartonella species infection in rodents in Hebei Province, which could be potentially helpful for the prevention of bartonellosis caused by rodent-associated Bartonella species. This study highlights the urgent need for the surveillance of Bartonella infections in rodents and ectoparasites that affect both rodents and humans and can cause fever of unknown origin or endocarditis.

17.
Transl Pediatr ; 11(2): 204-211, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35282019

ABSTRACT

Background: It is reported that the incidence of language development disorder in children at the age of 2 is as high as 17.0%. Timely discovery of the high-risk factors of language development disorder in children and early intervention can greatly reduce the incidence of language development disorder and shorten the course and condition of the patients with language development disorder. Therefore, in order to facilitate prompt diagnosis and early interventions for children with language development disorder (DLD) and improve their language ability, this study explored the influence of perinatal factors on the language development of children in Ningxia and identified the unfavorable and favorable factors that influenced language development. Methods: Children diagnosed in the General Hospital of Ningxia Medical University during 2018-2021 who met the screening criteria for DLD and practical pediatric diagnostic criteria for DLD were enrolled in this study. Perinatal factors (gestational age, weight, sex, delivery mode, maternal age, presence of intrauterine infection, asphyxia) were retrospectively analyzed. The perinatal factors affecting language development were assessed using a one-way analysis of variance (ANOVA). Results: Among 1,500 children aged 0-3, 240 cases (16.00%) had language delay. Of these, 122 were male and 118 were female. There were 115 cases of comprehension and expression disorder, 30 cases of articulation disorder, and 90 cases of mixed manifestation. And there were 194 cases with definite intrauterine and perinatal high-risk factors or neonatal diseases, accounting for 80.83% of the total number of children with language delay. Conclusions: In Ningxia, factors in the neonatal period are the main cause of DLD, followed by fetal and maternal factors. Ischemic encephalopathy is the most common factor.

18.
Int J Med Sci ; 19(1): 175-185, 2022.
Article in English | MEDLINE | ID: mdl-34975311

ABSTRACT

Our previous study found that the combination of halofuginone (HF) and artemisinin (ATS) synergistically arrest colorectal cancer (CRC) cells at the G1/G0 phase of the cell cycle; however, it remains unclear whether HF-ATS induces cell death. Here we report that HF-ATS synergistically induced caspase-dependent apoptosis in CRC cells. Specifically, both in vitro and in vivo experiments showed that HF or HF-ATS induces apoptosis via activation of caspase-9 and caspase-8 while only caspase-9 is involved in ATS-induced apoptosis. Furthermore, we found HF or HF-ATS induces autophagy; ATS can't induce autophagy until caspase-9 is blocked. Further analyzing the crosstalk between autophagic and caspase activation in CRC cells, we found autophagy is essential for activation of caspase-8, and ATS switches to activate capase-8 via induction of autophagy when caspase-9 is inhibited. When apoptosis is totally blocked, HF-ATS switches to induce autophagic cell death. This scenario was then confirmed in studies of chemoresistance CRC cells with defective apoptosis. Our results indicate that HF-ATS induces cell death via interaction between apoptosis and autophagy in CRC cells. These results highlight the value of continued investigation into the potential use of this combination in cancer therapy.


Subject(s)
Apoptosis/drug effects , Artemisinins/pharmacology , Colorectal Neoplasms/pathology , Piperidines/pharmacology , Quinazolinones/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Artemisinins/therapeutic use , Autophagy/drug effects , Caspase 8/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Drug Synergism , Enzyme Activation , Humans , Piperidines/therapeutic use , Quinazolinones/therapeutic use , Receptor Cross-Talk
19.
Arch Virol ; 167(2): 459-470, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35083576

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a major impact on global human health. During the spread of SARS-CoV-2, weakened host immunity and the use of vaccines with low efficacy may result in the development of more-virulent strains or strains with resistance to existing vaccines and antibodies. The prevalence of SARS-CoV-2 mutant strains differs between regions, and this variation may have an impact on the effectiveness of vaccines. In this study, an epidemiological investigation of SARS-CoV-2 in Portugal was performed, and the VSV-ΔG-G* pseudovirus system was used to construct 12 spike protein epidemic mutants, D614G, A222V+D614G, B.1.1.7, S477N+D614G, P1162R+D614G+A222V, D839Y+D614G, L176F+D614G, B.1.1.7+L216F, B.1.1.7+M740V, B.1.258, B.1.258+L1063F, and B.1.258+N751Y. The mutant pseudoviruses were used to infect four susceptible cell lines (Huh7, hACE2-293T-293T, Vero, and LLC-MK2) and 14 cell lines overexpressing ACE2 from different species. Mutant strains did not show increased infectivity or cross-species transmission. Neutralization activity against these pseudoviruses was evaluated using mouse serum and 11 monoclonal antibodies. The neutralizing activity of immunized mouse serum was not significantly reduced with the mutant strains, but the mutant strains from Portugal could evade nine of the 11 monoclonal antibodies tested. Neutralization resistance was mainly caused by the mutations S477N, N439K, and N501Y in the spike-receptor binding domain. These findings emphasize the importance of SARS-CoV-2 mutation tracking in different regions for epidemic prevention and control.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Humans , Mice , Mutation , Portugal/epidemiology , Spike Glycoprotein, Coronavirus/genetics
20.
Insect Mol Biol ; 30(4): 400-409, 2021 08.
Article in English | MEDLINE | ID: mdl-33837597

ABSTRACT

Proteins containing nuclear localization signals (NLSs) are actively transported into the nucleus via the classic importin-α/ß-mediated pathway, and NLSs are recognized by members of the importin-α family. Most studies of insect importin-αs have focused on Drosophila to date, little is known about the importin-α proteins in Lepidoptera insects. In this study, we identified four putative importin-α homologues, Spodoptera frugiperda importin-α1 (SfIMA1), SfIMA2, SfIMA4 and SfIMA7, from Sf9 cells. Immunofluorescence analysis showed that SfIMA2, SfIMA4 and SfIMA7 localized to the nucleus, while SfIMA1 distributed in cytoplasm. Additionally, SfIMA4 and SfIMA7 were also detected in the nuclear membrane of Sf9 cells. SfIMA1, SfIMA4 and SfIMA7, but not SfIMA2, were found to associate with the C terminus of AcMNPV DNA polymerase (DNApol) that harbours a typical monopartite NLS and a classic bipartite NLS. Further analysis of protein-protein interactions revealed that SfIMA1 specifically recognizes the bipartite NLS, while SfIMA4 and SfIMA7 bind to both monopartite and bipartite NLSs. Together, our results suggested that SfIMA1, SfIMA4 and SfIMA7 play important roles in the nuclear import of AcMNPV DNApol C terminus in Sf9 cells.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Nucleopolyhedroviruses , Spodoptera , alpha Karyopherins/metabolism , Active Transport, Cell Nucleus/physiology , Animals , Cell Nucleus/metabolism , Cell Nucleus/virology , Insect Proteins/metabolism , Nuclear Localization Signals/metabolism , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/metabolism , Protein Interaction Domains and Motifs , Sf9 Cells/metabolism , Sf9 Cells/virology , Spodoptera/metabolism , Spodoptera/virology , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...