Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
1.
Biomed Pharmacother ; 177: 117049, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38945081

ABSTRACT

Ginseng, the dried root of Panax ginseng C.A. Mey., is widely used in Chinese herbal medicine. Ginsenosides, the primary active components of ginseng, exhibit diverse anticancer functions through various mechanisms, such as inhibiting tumor cell proliferation, promoting apoptosis, and suppressing cell invasion and migration. In this article, the mechanism of action of 20 ginsenoside subtypes in tumor therapy and the research progress of multifunctional nanosystems are reviewed, in order to provide reference for clinical prevention and treatment of cancer.

2.
Article in English | MEDLINE | ID: mdl-38864908

ABSTRACT

The study aimed to utilize network pharmacology combined with cell experiments to research the mechanism of action of Saikosaponin-d in the treatment of gastric cancer. Drug target genes were obtained from the PubChem database and the Swiss Target Prediction database. Additionally, target genes for gastric cancer were obtained from the GEO database and the Gene Cards database. The core targets were then identified and further analyzed through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GESA enrichment. The clinical relevance of the core targets was assessed using the GEPIA and HPA databases. Molecular docking of drug monomers and core target proteins was performed using Auto Duck Tools and Pymol software. Finally, in vitro cellular experiments including cell viability, apoptosis, cell scratch, transwell invasion, transwell migration, qRT-PCR, and Western blot were conducted to verify these findings of network pharmacology. The network pharmacology analysis predicted that the drug monomers interacted with 54 disease targets. Based on clinical relevance analysis, six core targets were selected: VEGFA, IL2, CASP3, BCL2L1, MMP2, and MMP1. Molecular docking results showed binding activity between the Saikosaponin-d monomer and these core targets. Saikosaponin-d could inhibit gastric cancer cell proliferation, induce apoptosis, and inhibit cell migration and invasion.

3.
Am J Cancer Res ; 14(5): 2037-2054, 2024.
Article in English | MEDLINE | ID: mdl-38859843

ABSTRACT

Glioblastoma is the most common cancer in the brain, resistant to conventional therapy and prone to recurrence. Therefore, it is crucial to explore novel therapeutics strategies for the treatment and prognosis of GBM. In this study, through analyzing online datasets, we elucidated the expression and prognostic value of POLR2J and its co-expressed genes in GBM patients. Functional experiments, including assays for cell apoptosis and cell migration, were used to explore the effects of POLR2J and vorinostat on the proliferation and migration of GBM cells. The highest overexpression of POLR2J, among all cancer types, was observed in GBM. Furthermore, high expression of POLR2J or its co-expressed genes predicted a poor outcome in GBM patients. DNA replication pathways were significantly enriched in the GBM clinical samples with high POLR2J expression, and POLR2J suppression inhibited proliferation and triggered cell cycle G1/S phase arrest in GBM cells. Moreover, POLR2J silencing activated the unfolded protein response (UPR) and significantly enhanced the anti-GBM activity of vorinostat by suppressing cell proliferation and inducing apoptosis. Additionally, POLR2J could interact with STAT3 to promote the metastatic potential of GBM cells. Our study identifies POLR2J as a novel oncogene in GBM progression and provides a promising strategy for the chemotherapeutic treatment of GBM.

4.
Medicine (Baltimore) ; 103(25): e38531, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905394

ABSTRACT

The aim of this study was to investigate the key targets and molecular mechanisms of the drug pair Astragalus membranaceus and Poria cocos (HFDP) in the treatment of immunity. We utilized network pharmacology, molecular docking, and immune infiltration techniques in conjunction with data from the GEO database. Previous clinical studies have shown that HFDP has a positive impact on immune function. We first identified the active ingredients and targets of HFDP from the Traditional Chinese Medicine Systems Pharmacology database and the Swiss Target Prediction database, respectively. Next, we retrieved the differentially expressed genes (DEGs) related to immunity from the GEO databases. The intersection targets of the drugs and diseases were then analyzed using the STRING database for protein-protein interaction (PPI) network analysis, and the core targets were determined through topological analysis. Finally, the intersection genes were further analyzed using the DAVID database for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. Subsequently, by analyzing the expression and prognostic survival of 12 core targets, 5 core target genes were identified, and molecular docking between the hub genes and immunity was performed. Finally, we used the CIBERSORT algorithm to analyze the immune infiltration of immunity genes In this study, 34 effective ingredients of HFDP, 530 target genes, and 568 differential genes were identified. GO and KEGG analysis showed that the intersection genes of HFDP targets and immunity-related genes were mainly related to complement and coagulation cascades, cytokine receptors, and retinol metabolism pathways. The molecular docking results showed that the 5 core genes had obvious affinity for the active ingredients of HFDP, which could be used as potential targets to improve the immunity of HFDP. Our findings suggest that HFDP is characterized by "multiple components, multiple targets, and multiple pathways" in regulating immunity. It may play an essential role in regulating immunity by regulating the expression and polymorphism of the central target genes ESR1, JUN, CYP3A4, CYP2C9, and SERPINE1.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Protein Interaction Maps/genetics , Humans , Wolfiporia/chemistry , Medicine, Chinese Traditional
5.
Med Phys ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874206

ABSTRACT

BACKGROUND: Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) stand as pivotal diagnostic tools for brain disorders, offering the potential for mutually enriching disease diagnostic perspectives. However, the costs associated with PET scans and the inherent radioactivity have limited the widespread application of PET. Furthermore, it is noteworthy to highlight the promising potential of high-field and ultra-high-field neuroimaging in cognitive neuroscience research and clinical practice. With the enhancement of MRI resolution, a related question arises: can high-resolution MRI improve the quality of PET images? PURPOSE: This study aims to enhance the quality of synthesized PET images by leveraging the superior resolution capabilities provided by high-field and ultra-high-field MRI. METHODS: From a statistical perspective, the joint probability distribution is considered the most direct and fundamental approach for representing the correlation between PET and MRI. In this study, we proposed a novel model, the joint diffusion attention model, namely, the joint diffusion attention model (JDAM), which primarily focuses on learning information about the joint probability distribution. JDAM consists of two primary processes: the diffusion process and the sampling process. During the diffusion process, PET gradually transforms into a Gaussian noise distribution by adding Gaussian noise, while MRI remains fixed. The central objective of the diffusion process is to learn the gradient of the logarithm of the joint probability distribution between MRI and noise PET. The sampling process operates as a predictor-corrector. The predictor initiates a reverse diffusion process, and the corrector applies Langevin dynamics. RESULTS: Experimental results from the publicly available Alzheimer's Disease Neuroimaging Initiative dataset highlight the effectiveness of the proposed model compared to state-of-the-art (SOTA) models such as Pix2pix and CycleGAN. Significantly, synthetic PET images guided by ultra-high-field MRI exhibit marked improvements in signal-to-noise characteristics when contrasted with those generated from high-field MRI data. These results have been endorsed by medical experts, who consider the PET images synthesized through JDAM to possess scientific merit. This endorsement is based on their symmetrical features and precise representation of regions displaying hypometabolism, a hallmark of Alzheimer's disease. CONCLUSIONS: This study establishes the feasibility of generating PET images from MRI. Synthesis of PET by JDAM significantly enhances image quality compared to SOTA models.

6.
J Fluoresc ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878194

ABSTRACT

Nitrite ion is one of the materials widely used in human life, and the accurate, sensitive and stable detection of nitrite ions is of great significance to people's healthy life. In this study, nitrogen-doped fluorescent carbon dots (N-CDs) for detecting nitrite salt solutions were prepared using citric acid monohydrate and Chrysoidin as precursors through a one-pot hydrothermal method. Under the condition of pH = 3, a noticeable quenching phenomenon occurred in the carbon dot solution with the increase in nitrite ion concentration. This quenching effect might be attributed to the diazonium effect. N-CDs have been successfully used as fluorescence probes for NO2- detection. NO2- can effectively quench the fluorescence intensity of N-CDs, providing a linear response to fluorescence quenching efficiency with respect to NO2- concentration within the range of 0-10µM and 10-30µM, and a detection limit of 52nM, showing high sensitivity. In addition, the probe was applied to the determination of NO2- in ham sausage samples with a detection limit of 0.67µM and recoveries in the range of 99.5-102.3%, the fluorescent probe showed satisfactory reliability.

7.
Front Pharmacol ; 15: 1384189, 2024.
Article in English | MEDLINE | ID: mdl-38915462

ABSTRACT

Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.

8.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Article in English | MEDLINE | ID: mdl-38725860

ABSTRACT

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , STAT3 Transcription Factor , Signal Transduction , Tetraspanins , Animals , Humans , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Exosomes/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , STAT3 Transcription Factor/metabolism , Tetraspanins/metabolism , Tetraspanins/genetics
9.
Environ Sci Pollut Res Int ; 31(27): 39421-39431, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819513

ABSTRACT

Activated coke is a type of commonly used adsorbent for benzene series VOCs such as toluene, but traditional microporous activated coke usually faces the challenge of poor regeneration performance. Herein, based on self-made activated cokes with typical pore configuration, we found that adsorption and regeneration of toluene can be simultaneously enhanced by constructing hierarchical pore in activated coke. Correlations of pore configuration with toluene adsorption capacity and regeneration efficiency reveal that micropore contributes for strong toluene adsorption; meso-macropore provides mass transfer channel for toluene desorption and regeneration process. Hierarchical porous activated coke prepared from Zhundong subbituminous coal not only achieves the highest toluene adsorption capacity of 340.92 mg·g-1, but also can retain more than 90% of initial adsorption capacity after five adsorption-regeneration cycles. By contrast, micropore-dominant activated cokes can only retain 70% of initial adsorption capacity. Adsorption kinetic modelling on adsorption breakthrough curves shows that hierarchical porous activated coke prepared from Zhundong subbituminous coal exhibits high adsorption and diffusion rate constants of 14.39 and 33.45 min-1, respectively, much higher than those of micropore-dominant activated cokes. Due to the accelerated surface adsorption and diffusion processes induced by meso-macropore, toluene adsorption and regeneration behavior can be simultaneously improved. Results from this work validated the role of pore hierarchy in toluene adsorption-regeneration process, providing guidance for designing high-performance activated coke with synergistically improved toluene adsorption capacity and regeneration performance.


Subject(s)
Coke , Toluene , Toluene/chemistry , Adsorption , Kinetics , Porosity
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124453, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38749201

ABSTRACT

In this study, fluorescent carbon dots were synthesized for the first time using ammonium citrate and glutamic acid as precursors via a one-pot hydrothermal method. The synthesized carbon dots emit blue fluorescence at 436 nm (excited at 320 nm) and demonstrate excellent photobleaching resistance and fluorescence stability in high salt environments. Within the range of 1-25 µM, the fluorescence of CDs gradually increases with the increasing concentration of Cd2+, reaching a limit of detection as low as 13 nM. This phenomenon could be ascribed to the chelation-enhanced fluorescence, a result of Cd2+ forming complexes with the abundant surface functional groups such as CN-, -COOH, -OH, -NH2 in CDs. Furthermore, this turn-on fluorescent probe has been successfully used for the detection of Cd2+ in tap water and lake water, providing an efficient and sensitive method for the analysis of environmental metals.

11.
PLoS Negl Trop Dis ; 18(5): e0012159, 2024 May.
Article in English | MEDLINE | ID: mdl-38739673

ABSTRACT

BACKGROUND: Rodents are recognized as the hosts of many vector-borne bacteria and protozoan parasites and play an important role in their transmission and maintenance. Intensive studies have focused on their infections in vectors, especially in ticks, however, vector-borne bacterial and protozoan infections in rodents are poorly understood although human cases presenting with fever may due to their infection have been found. METHODS: From May to October 2019, 192 wild rodents were trapped in wild environment of Guangxi Province, and the spleen samples were collected to reveal the presence of vector-borne bacterial and protozoan infections in them. The microorganisms in rodents were identified by detecting their DNA using (semi-)nested PCR. All the PCR products of the expected size were subjected to sequencing, and then analyzed by BLASTn. Furthermore, all the recovered sequences were subjected to nucleotide identity and phylogenetic analyses. RESULTS: As a result, 192 rodents representing seven species were captured, and Bandicota indica were the dominant species, followed by Rattus andamanensis. Based on the (semi-)nested PCR, our results suggested that Anaplasma bovis, Anaplasma capra, Anaplasma ovis, Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis", "Candidatus E. hainanensis", "Candidatus E. zunyiensis", three uncultured Ehrlichia spp., Bartonella coopersplainsensis, Bartonella tribocorum, Bartonella rattimassiliensis, Bartonella silvatica, two uncultured Bartonella spp., Babesia microti and diverse Hepatozoon were identified in six rodent species. More importantly, six species (including two Anaplasma, two Bartonella, "Ca. N. mikurensis" and Bab. microti) are zoonotic pathogens except Anaplasma bovis and Anaplasma ovis with zoonotic potential. Furthermore, dual infection was observed between different microorganisms, and the most common type of co-infection is between "Ca. N. mikurensis" and other microorganisms. Additionally, potential novel Bartonella species and Hepatozoon species demonstrated the presence of more diverse rodent-associated Bartonella and Hepatozoon. CONCLUSIONS: The results in this work indicated great genetic diversity of vector-borne infections in wild rodents, and highlighted the potential risk of human pathogens transmitted from rodents to humans through vectors.


Subject(s)
Genetic Variation , Rodentia , Animals , China/epidemiology , Rodentia/microbiology , Rodentia/parasitology , Phylogeny , Animals, Wild/parasitology , Animals, Wild/microbiology , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/classification , Vector Borne Diseases/transmission , Vector Borne Diseases/microbiology , Vector Borne Diseases/parasitology , Vector Borne Diseases/epidemiology , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Rats
12.
World J Stem Cells ; 16(5): 525-537, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817335

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality rates. The use of pluripotent stem cells holds great promise for the treatment of AKI. Urine-derived stem cells (USCs) are a novel and versatile cell source in cell-based therapy and regenerative medicine that provide advantages of a noninvasive, simple, and low-cost approach and are induced with high multidifferentiation potential. Whether these cells could serve as a potential stem cell source for the treatment of AKI has not been determined. AIM: To investigate whether USCs can serve as a potential stem cell source to improve renal function and histological structure after experimental AKI. METHODS: Stem cell markers with multidifferentiation potential were isolated from human amniotic fluid. AKI severe combined immune deficiency (SCID) mice models were induced by means of an intramuscular injection with glycerol. USCs isolated from human-voided urine were administered via tail veins. The functional changes in the kidney were assessed by the levels of blood urea nitrogen and serum creatinine. The histologic changes were evaluated by hematoxylin and eosin staining and transferase dUTP nick-end labeling staining. Meanwhile, we compared the regenerative potential of USCs with bone marrow-derived mesenchymal stem cells (MSCs). RESULTS: Treatment with USCs significantly alleviated histological destruction and functional decline. The renal function was rapidly restored after intravenous injection of 5 × 105 human USCs into SCID mice with glycerol-induced AKI compared with injection of saline. Results from secretion assays conducted in vitro demonstrated that both stem cell varieties released a wide array of cytokines and growth factors. This suggests that a mixture of various mediators closely interacts with their biochemical functions. Two types of stem cells showed enhanced tubular cell proliferation and decreased tubular cell apoptosis, although USC treatment was not more effective than MSC treatment. We found that USC therapy significantly improved renal function and histological damage, inhibited inflammation and apoptosis processes in the kidney, and promoted tubular epithelial proliferation. CONCLUSION: Our study demonstrated the potential of USCs for the treatment of AKI, representing a new clinical therapeutic strategy.

13.
World J Gastrointest Oncol ; 16(5): 1965-1994, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764819

ABSTRACT

BACKGROUND: Yigong San (YGS) is a representative prescription for the treatment of digestive disorders, which has been used in clinic for more than 1000 years. However, the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear. AIM: To explore the mechanism of YGS anti-gastric cancer and immune regulation. METHODS: Firstly, collect the active ingredients and targets of YGS, and the differentially expressed genes of gastric cancer. Secondly, constructed a protein-protein interaction network between the targets of drugs and diseases, and screened hub genes. Then the clinical relevance, mutation and repair, tumor microenvironment and drug sensitivity of the hub gene were analyzed. Finally, molecular docking was used to verify the binding ability of YGS active ingredient and hub genes. RESULTS: Firstly, obtained 55 common targets of gastric cancer and YGS. The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6, EGFR, MMP2, MMP9 and TGFB1 as the hub genes. The 5 hub genes were involved in gastric carcinogenesis, staging, typing and prognosis, and their mutations promote gastric cancer progression. Finally, molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets. CONCLUSION: YGS has the effect of anti-gastric cancer and immune regulation.

14.
Adv Sci (Weinh) ; 11(22): e2400255, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602431

ABSTRACT

Elastomers are widely used in daily life; however, the preparation of degradable and recyclable elastomers with high strength, high toughness, and excellent crack resistance remains a challenging task. In this report, a polycaprolactone-based poly(urethane-urea) elastomer is presented with excellent mechanical properties by optimizing the arrangement of hard segment clusters. It is found that long alkyl chains of the chain extenders lead to small and evenly distributed hard segment clusters, which is beneficial for improving mechanical properties. Together with the multiple hydrogen bond structure and stress-induced crystallization, the obtained elastomer exhibits a high strength of 63.3 MPa, an excellent toughness of 431 MJ m-3 and an outstanding fracture energy of 489 kJ m-2, while maintaining good recyclability and degradability. It is believed that the obtained elastomer holds great promise in various application fields and it contributes to the development of a sustainable society.

15.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675663

ABSTRACT

PURPOSE: To investigate and systematically describe the mechanism of action of Prunella vulgaris (P. vulgaris) against digestive system tumors and related toxicity reduction. METHODS: This study briefly describes the history of medicinal food and the pharmacological effects of P. vulgaris, focusing on the review of the anti-digestive tumor effects of the active ingredients of P. vulgaris and the mechanism of its toxicity reduction. RESULTS: The active ingredients of P. vulgaris may exert anti-tumor effects by inducing the apoptosis of cancer cells, inhibiting angiogenesis, inhibiting the migration and invasion of tumor cells, and inhibiting autophagy. In addition, P. vulgaris active ingredients inhibit the release of inflammatory factors and macrophages and increase the level of indicators of oxidative stress through the modulation of target genes in the pathway to achieve the effect of toxicity reduction. CONCLUSION: The active ingredients in the medicine food homology plant P. vulgaris not only treat digestive system tumors through different mechanisms but also reduce the toxic effects. P. vulgaris is worthy of being explored more deeply.


Subject(s)
Prunella , Prunella/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Autophagy/drug effects , Animals , Oxidative Stress/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
16.
J Virol ; 98(5): e0029924, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38557225

ABSTRACT

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is highly conserved in all sequenced baculovirus genomes, and it plays important roles in both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. In this study, we characterized a cellular CRM1-dependent nuclear export signal (NES) of AcMNPV Ac93. Bioinformatic analysis revealed that AcMNPV Ac93 may contain an NES at amino acids 115-125. Green fluorescent protein (GFP) fused to the NES (GFP:NES) of AcMNPV Ac93 is localized to the cytoplasm of transfected cells. Multiple point mutation analysis demonstrated that NES is important for the nuclear export of GFP:NES. Bimolecular fluorescence complementation experiments and co-immunoprecipitation assays confirmed that Ac93 interacts with Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits cellular CRM1-dependent nuclear export of GFP:NES. To determine whether the NES in AcMNPV Ac93 is important for the formation of intranuclear microvesicles, an ac93-null AcMNPV bacmid was constructed; the wild-type and NES-mutated Ac93 were reinserted into the ac93-null AcMNPV bacmid. Immunofluorescence analysis showed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in infected cells, while the construct containing point mutations at residues 123 and 125 of Ac93 resulted in a defect in budded virus production and the abolishment of intranuclear microvesicles. Together, these data demonstrate that Ac93 contains a functional NES, which is required for the production of progeny viruses and the formation of intranuclear microvesicles.IMPORTANCEAutographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is important for the formation of intranuclear microvesicles. However, how the baculovirus manipulates Ac93 for the formation of intranuclear microvesicles is unclear. In this study, we identified a nuclear export signal (NES) at amino acids 115-125 of AcMNPV Ac93. Our results showed that the NES is required for the interaction between Ac93 and Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits the nuclear export of green fluorescent protein fused to the NES. Our analysis revealed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in AcMNPV-infected cells. Together, our results indicate that Ac93 participates in the formation of intranuclear microvesicles via the Ac93 NES-mediated CRM1 pathway.


Subject(s)
Active Transport, Cell Nucleus , Nuclear Export Signals , Nucleopolyhedroviruses , Viral Proteins , Animals , Cell Nucleus/metabolism , Cell Nucleus/virology , Exportin 1 Protein , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Karyopherins/metabolism , Nucleopolyhedroviruses/metabolism , Nucleopolyhedroviruses/physiology , Nucleopolyhedroviruses/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Sf9 Cells , Spodoptera/virology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
17.
World J Clin Cases ; 12(11): 1980-1989, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38660556

ABSTRACT

BACKGROUND: This case report presents the rare occurrence of hematochezia due to an internal iliac artery aneurysm leading to an arterioenteric fistula, expanding the differential diagnosis for gastrointestinal bleeding. It emphasizes the importance of considering vascular origins in cases of atypical hematochezia, particularly in the absence of common gastrointestinal causes, and highlights the role of imaging and multidisciplinary management in diagnosing and treating such unusual presentations. CASE SUMMARY: A 75-year-old man with a history of hypertension presented with 12 d of hematochezia, experiencing bloody stools 7-8 times per day. Initial computed tomography (CT) scans revealed an aneurysmal rupture near the right internal iliac artery with suspected hematoma development. Hemoglobin levels progressively decreased to 7 g/dL. Emergency arterial angiography and iliac artery-covered stent placement were performed, followed by balloon angioplasty. Despite initial stabilization, minor rectal bleeding and abdominal pain persisted, leading to further diagnostic colonoscopy. This identified a neoplasm and potential perforation at the proximal rectum. An exploratory laparotomy confirmed the presence of a hematoma and an aneurysm invading the rectal wall, necessitating partial rectal resection, intestinal anastomosis, and ileostomy. Postoperative recovery was successful, with no further bleeding incidents and normal follow-up CT and colonoscopy results after six months. CONCLUSION: In cases of unusual gastrointestinal bleeding, it is necessary to consider vascular causes for effective diagnosis and intervention.

18.
Mikrochim Acta ; 191(5): 233, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568427

ABSTRACT

Nitrogen, boron co-doped carbon quantum dots (gCQDs), and a coloration probe (PPD-NPs) with response to cobalt ions (Co2+) were prepared by using 4-hydroxyphenylboric acid as the common precursor, with ethylenediamine and p-phenylenediamine (PPD) adopted as nitrogen-doped reagents, respectively. A noticeable brown-to-purple color change can be observed with the addition of Co2+, and a broad absorption band emerges at 535 nm. At the same time, gCQDs, which is introduced as the fluorescence signal source, will be significantly quenched due to the enhanced inner filtration effect, induced by the overlap between the emission spectrum of gCQDs and the emerging absorption band. Therefore, a colorimetric/fluorescent dual-mode sensing probe for Co2+ is constructed by combining the recognition unit PPD-NPs and the fluorescent gCQDs into PPD-NP/gCQD. Under the optimized experimental conditions, the calculated limits of detection are 1.51 × 10-7 M and 3.75 × 10-7 M for the colorimetric mode and the fluorescence mode, respectively, well qualified for the determination of Co2+ maximum permitted level in drinking water. The feasibility of the proposed method has been verified in tap water, lake water, and black tea samples.

19.
J Fluoresc ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457076

ABSTRACT

Herein, a fluorescent "on-off-on" nanosensor based on N,S-CDs was developed for highly precise and sensitive recognition of Hg2+ and ampicillin (AMP). Nitrogen and sulfur co-doped carbon dots with blue fluorescence were synthesized by one-pot hydrothermal method using ammonium citrate and DL-methionine as precursors. N,S-CDs exhibited a surface abundant in -OH, -COOH, and -NH2 groups, aiding in creating non-fluorescent ground state complexes when combined with Hg2+, leading to the suppression of N,S-CDs' fluorescence. Subsequent to additional AMP application, the mixed system's fluorescence was restored. Based on this N,S-CDs sensing system, the thresholds for detection for AMP and Hg2+ were discovered to be 0.121 µM and 0.493 µM, respectively. Furthermore, this methodology proved effective in identifying AMP in real samples of tap and lake water, yielding satisfactory results. Consequently, in the area of bioanalysis in intricate environmental sample work, the sensing system showed tremendous promise.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124165, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38493514

ABSTRACT

This study presents the design of a Surface-enhanced Raman scattering (SERS) substrate, COF@Ag, for the sensitive detection of Amoxicillin (AMX) in lake water and honey. Furthermore, the study investigates the role of covalent organic frameworks (COFs) in SERS detection. The characterization results demonstrate the capability of COFs to efficiently enrich Ag nanoparticles (AgNPs), resulting in a more concentrated distribution of hotspots and an enhanced electromagnetic field on the substrate. By employing density functional theory (DFT) simulation, the frontier electronic orbitals of COFs and AMX were analyzed, and the chemical bonds and weak interactions in the system were examined using the Interaction Region Indicator (IRI) method to propose potential enhancement mechanisms. In aqueous solutions, the linear range is 1 µg/L-30 µg/L, with a limit of detection (LOD) 0.279 µg/L. In lake water, the linear range span from 100 µg/L to 500 µg/L, with a detection limit of 8.244 µg/L. For honey, the linear range extend from 20 ng/g to 100 ng/g, with a detection limit of 2.917 ng/g. This method holds key significance in facilitating the rapid detection of amoxicillin and advancing the application of COFs in SERS.


Subject(s)
Honey , Metal Nanoparticles , Metal-Organic Frameworks , Metal Nanoparticles/chemistry , Lakes , Silver/chemistry , Water , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...