Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37050361

ABSTRACT

Maleic anhydride (MA) is introduced to fabricate poly(vinylidene fluoride)/expanded graphite (PVDF/EG) composites via one-step melt mixing. SEM micrographs and WAXD results have demonstrated that the addition of MA helps to exfoliate and disperse the EG well in the PVDF matrix by promoting the mobility of PVDF molecular chains and enhancing the interfacial adhesion between the EG layers and the PVDF. Thus, much higher thermal conductivities are obtained for the PVDF/MA/EG composites compared to the PVDF/EG composites that are lacking MA. For instance, The PVDF/MA/EG composite prepared with a mass ratio of 93:14:7 exhibits a high thermal conductivity of up to 0.73 W/mK. It is 32.7% higher than the thermal conductivity of the PVDF/EG composite that is prepared with a mass ratio of 93:7. Moreover, the introduction of MA leads to an increased melting peak temperature and crystallinity due to an increased nucleation site provided by the uniformly dispersed EG in the PVDF matrix. This study provides an efficient preparation method for PVDF/EG composites with a high thermal conductivity.

2.
Sci Rep ; 12(1): 6731, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468925

ABSTRACT

To rapidly obtain the complete characterization information of pulse signals and to verify the sensitivity and validity of pulse signals in the clinical diagnosis of related diseases. In this paper, an improved PNCC method is proposed as a supplementary feature to enable the complete characterization of pulse signals. In this paper, the wavelet scattering method is used to extract time-domain features from impulse signals, and EEMD-based improved PNCC (EPNCC) is used to extract frequency-domain features. The time-frequency features are mixed into a convolutional neural network for final classification and recognition. The data for this study were obtained from the MIT-BIH-mimic database, which was used to verify the effectiveness of the proposed method. The experimental analysis of three types of clinical symptom pulse signals showed an accuracy of 98.3% for pulse classification and recognition. The method is effective in complete pulse characterization and improves pulse classification accuracy under the processing of the three clinical pulse signals used in the paper.


Subject(s)
Electrocardiography , Neural Networks, Computer , Databases, Factual , Electrocardiography/methods , Heart Rate , Research Design
3.
Micromachines (Basel) ; 12(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34577671

ABSTRACT

The microgripper plays a critical role in micromanipulation systems; however, the handling accuracy of traditional driving microgrippers suffers from external vibration due to requiring connecting wires for an external power supply. By contrast, light driving has many advantages of remote non-contact manipulation, wireless energy transfer and no induced electromagnetic noise. In this study, an opto-electrostatic repulsive combined driving mechanism was proposed, and then a novel light-operated microgripper that used an opto-electrostatic repulsive actuator was designed and simulated. The static performance of the light-operated microgripper was investigated via simulation and numeric calculation results. The overall size of the microgripper was 1.3 mm × 0.7 mm × 1.027 mm, and the micro-objects ranging from 0 to 1000 µm in size could be manipulated and held using light. The proposed microgripper had many outstanding characteristics, such as a larger stroke, high response speed, remote non-contact manipulation, easy to integrate with an integrated circuit (IC) process and free from external interference. In addition, the dynamic control experiments of the photo-induced voltage of the PbLaZrTi (PLZT) ceramic were carried out, which shows that a stable electrical field could be obtained using the effective control methods that were developed.

4.
Polymers (Basel) ; 13(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34577996

ABSTRACT

Polypropylene/graphite intercalation compound (PP/GIC) composites are prepared via melt mixing at three different temperatures (180, 200, and 220 °C). The dispersion of GICs in the composites is clearly improved due to the increased interlamellar spacing caused by in situ expansion of GICs at higher temperatures, which facilitates the intercalation of PP molecular chains into the GIC galleries. As a result, the PP/GIC composite with 10 wt% GICs prepared at 220 °C (PG220) presents a dielectric constant of about 1.3 × 108 at 103 Hz, which is about six orders higher than that of the composite prepared at 180 °C (PG180). Moreover, the thermal conductivity of the PG220 sample (0.63 Wm-1K-1) is 61.5% higher than that of the PG180 sample. The well-dispersed GICs accelerates the crystallization of PP by increasing the nucleation point and enhances the thermal stability of the composites. The PG220 sample shows a Young's modulus that is about 21.2% higher than that of the PG180 samples. The results provide an efficient approach for fabricating polymer/GIC composites without complex exfoliation and dispersion processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...