Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Small ; : e2401713, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693076

ABSTRACT

Aqueous zinc-based energy storage devices possess superior safety, cost-effectiveness, and high energy density; however, dendritic growth and side reactions on the zinc electrode curtail their widespread applications. In this study, these issues are mitigated by introducing a polyimide (PI) nanofabric interfacial layer onto the zinc substrate. Simulations reveal that the PI nanofabric promotes a pre-desolvation process, effectively desolvating hydrated zinc ions from Zn(H2O)6 2+ to Zn(H2O)4 2+ before approaching the zinc surface. The exposed zinc ion in Zn(H2O)4 2+ provides an accelerated charge transfer process and reduces the activation energy for zinc deposition from 40 to 21 kJ mol-1. The PI nanofabric also acts as a protective barrier, reducing side reactions at the electrode. As a result, the PI-Zn symmetric cell exhibits remarkable cycling stability over 1200 h, maintaining a dendrite-free morphology and minimal byproduct formation. Moreover, the cell exhibits high stability and low voltage hysteresis even under high current densities (20 mA cm-2, 10 mAh cm-2) thanks to the 3D porous structure of PI nanofabric. When integrated into full cells, the PI-Zn||AC hybrid zinc-ion capacitor and PI-Zn||MnVOH@SWCNT zinc-ion battery achieve impressive lifespans of 15000 and 600 cycles with outstanding capacitance retention. This approach paves a novel avenue for high-performance zinc metal electrodes.

2.
J Colloid Interface Sci ; 669: 117-125, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38705111

ABSTRACT

Lithium cobalt phosphate (LiCoPO4) has great potential to be developed as a cathode material for lithium-ion batteries (LIBs) due to its structural stability and higher voltage platform with a high theoretical energy density. However, the relatively low diffusion of lithium ions still needs to be improved. In this work, Fe and Zn co-doped LiCoPO4: LiCo0.9-xFe0.1ZnxPO4/C is utilized to enhance the battery performance of LiCoPO4. The electrochemical properties of LiCo0.85Fe0.1Zn0.05PO4/C demonstrated an initial capacity of 118 mAh/g, with 93.4 % capacity retention at 1C after 100 cycles, and a good capacity of 87 mAh/g remained under a high current density of 10C. In addition, the diffusion rate of Li ions was investigated, proving the improvement of the materials with doping. The impedance results also showed a smaller resistance of the doped materials. Furthermore, operando X-ray diffraction displayed a good reversibility of the structural transformation, corresponding to cycling stability. This work provided studies of both the electrochemical properties and structural transformation of Fe and Zn co-doped LiCoPO4, which showed that 10 % Fe and 5 % Zn co-doping enhanced the electrochemical performance of LiCoPO4 as a cathode material in LIBs.

3.
Nat Commun ; 15(1): 2728, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553434

ABSTRACT

Establishing appropriate metal-support interactions is imperative for acquiring efficient and corrosion-resistant catalysts for water splitting. Herein, the interaction mechanism between Ru nanoparticles and a series of titanium oxides, including TiO, Ti4O7 and TiO2, designed via facile non-stoichiometric engineering is systematically studied. Ti4O7, with the unique band structure, high conductivity and chemical stability, endows with ingenious metal-support interaction through interfacial Ti-O-Ru units, which stabilizes Ru species during OER and triggers hydrogen spillover to accelerate HER kinetics. As expected, Ru/Ti4O7 displays ultralow overpotentials of 8 mV and 150 mV for HER and OER with a long operation of 500 h at 10 mA cm-2 in acidic media, which is expanded in pH-universal environments. Benefitting from the excellent bifunctional performance, the proton exchange membrane and anion exchange membrane electrolyzer assembled with Ru/Ti4O7 achieves superior performance and robust operation. The work paves the way for efficient energy conversion devices.

4.
Nat Commun ; 15(1): 2778, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555361

ABSTRACT

Bacterial genotoxins damage host cells by targeting their chromosomal DNA. In the present study, we demonstrate that a genotoxin of Salmonella Typhi, typhoid toxin, triggers the senescence-associated secretory phenotype (SASP) by damaging mitochondrial DNA. The actions of typhoid toxin disrupt mitochondrial DNA integrity, leading to mitochondrial dysfunction and disturbance of redox homeostasis. Consequently, it facilitates the release of damaged mitochondrial DNA into the cytosol, activating type I interferon via the cGAS-STING pathway. We also reveal that the GCN2-mediated integrated stress response plays a role in the upregulation of inflammatory components depending on the STING signaling axis. These SASP factors can propagate the senescence effect on T cells, leading to senescence in these cells. These findings provide insights into how a bacterial genotoxin targets mitochondria to trigger a proinflammatory SASP, highlighting a potential therapeutic target for an anti-toxin intervention.


Subject(s)
Senescence-Associated Secretory Phenotype , Typhoid Fever , Humans , Typhoid Fever/metabolism , Mutagens/metabolism , Cellular Senescence/physiology , Mitochondria/metabolism , DNA, Mitochondrial/metabolism , Salmonella , Phenotype
5.
Angew Chem Int Ed Engl ; 63(18): e202402018, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38390636

ABSTRACT

Developing ruthenium-based heterogeneous catalysts with an efficient and stable interface is essential for enhanced acidic oxygen evolution reaction (OER). Herein, we report a defect-rich ultrathin boron nitride nanosheet support with relatively independent electron donor and acceptor sites, which serves as an electron reservoir and receiving station for RuO2, realizing the rapid supply and reception of electrons. Through precisely controlling the reaction interface, a low OER overpotential of only 180 mV (at 10 mA cm-2) and long-term operational stability (350 h) are achieved, suggesting potential practical applications. In situ characterization and theoretical calculations have validated the existence of a localized electronic recycling between RuO2 and ultrathin BN nanosheets (BNNS). The electron-rich Ru sites accelerate the adsorption of water molecules and the dissociation of intermediates, while the interconnection between the O-terminal and B-terminal edge establishes electronic back-donation, effectively suppressing the over-oxidation of lattice oxygen. This study provides a new perspective for constructing a stable and highly active catalytic interface.

6.
Adv Mater ; 36(7): e2308925, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37879753

ABSTRACT

Neutral oxygen evolution reaction (OER) with unique reactive environments exhibits extremely slow reaction kinetics, posing significant challenges in the design of catalysts. Herein, a built-in electric field between the tungstate (Ni-FeWO4 ) with adjustable work function and Lewis acid WO3 is elaborately constructed to regulate asymmetric interfacial electron distribution, which promotes electron accumulation of Fe sites in the tungstate. This decelerates the rapid dissolution of Fe under the OER potentials, thereby retaining the active hydroxyl oxide with the optimized OER reaction pathway. Meanwhile, Lewis acid WO3 enhances hydroxyl adsorption near the electrode surface to improve mass transfer. As expected, the optimized Ni-FeWO4 @WO3 /NF self-supporting electrode achieves a low overpotential of 235 mV at 10 mA cm-2 in neutral media and maintains stable operation for 200 h. Furthermore, the membrane electrode assembly constructed by such self-supporting electrode exhibits robust stability for 250 h during neutral seawater electrolysis. This work deepens the understanding of the reconstruction of OER catalysts in neutral environments and paves the way for development of the energy conversion technologies.

7.
Angew Chem Int Ed Engl ; 63(7): e202317220, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38153674

ABSTRACT

Modulating the microenvironment of single-atom catalysts (SACs) is critical to optimizing catalytic activity. Herein, we innovatively propose a strategy to improve the local reaction environment of Ru single atoms by precisely switching the crystallinity of the support from high crystalline and low crystalline, which significantly improves the hydrogen evolution reaction (HER) activity. The Ru single-atom catalyst anchored on low-crystalline nickel hydroxide (Ru-LC-Ni(OH)2 ) reconstructs the distribution balance of the interfacial ions due to the activation effect of metal dangling bonds on the support. Single-site Ru with a low oxidation state induces the aggregation of hydronium ions (H3 O+ ), leading to the formation of a local acidic microenvironment in alkaline media, breaking the pH-dependent HER activity. As a comparison, the Ru single-atom catalyst anchored on high-crystalline nickel hydroxide (Ru-HC-Ni(OH)2 ) exhibits a sluggish Volmer step and a conventional local reaction environment. As expected, Ru-LC-Ni(OH)2 requires low overpotentials of 9 and 136 mV at 10 and 1000 mA cm-2 in alkaline conditions and operates stably at 500 mA cm-2 for 500 h in an alkaline seawater anion exchange membrane (AEM) electrolyzer. This study provides a new perspective for constructing highly active single-atom electrocatalysts.

8.
J Am Chem Soc ; 145(43): 23659-23669, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37871168

ABSTRACT

Designing stable single-atom electrocatalysts with lower energy barriers is urgent for the acidic oxygen evolution reaction. In particular, the atomic catalysts are highly dependent on the kinetically sluggish acid-base mechanism, limiting the reaction paths of intermediates. Herein, we successfully manipulate the steric localization of Ru single atoms at the Co3O4 surface to improve acidic oxygen evolution by precise control of the anchor sites. The delicate structure design can switch the reaction mechanism from the lattice oxygen mechanism (LOM) to the optimized adsorbate evolution mechanism (AEM). In particular, Ru atoms embedded into cation vacancies reveal an optimized mechanism that activates the proton donor-acceptor function (PDAM), demonstrating a new single-atom catalytic pathway to circumvent the classic scaling relationship. Steric interactions with intermediates at the anchored Ru-O-Co interface played a primary role in optimizing the intermediates' conformation and reducing the energy barrier. As a comparison, Ru atoms confined to the surface sites exhibit a lattice oxygen mechanism for the oxygen evolution process. As a result, the delicate atom control of the spatial position presents a 100-fold increase in mass activity from 36.96 A gRu(ads)-1 to 4012.11 A gRu(anc)-1 at 1.50 V. These findings offer new insights into the precise control of single-atom catalytic behavior.

9.
Angew Chem Int Ed Engl ; 62(42): e202311937, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37658707

ABSTRACT

Designing novel single-atom catalysts (SACs) supports to modulate the electronic structure is crucial to optimize the catalytic activity, but rather challenging. Herein, a general strategy is proposed to utilize the metalloid properties of supports to trap and stabilize single-atoms with low-valence states. A series of single-atoms supported on the surface of tungsten carbide (M-WCx , M=Ru, Ir, Pd) are rationally developed through a facile pyrolysis method. Benefiting from the metalloid properties of WCx , the single-atoms exhibit weak coordination with surface W and C atoms, resulting in the formation of low-valence active centers similar to metals. The unique metal-metal interaction effectively stabilizes the low-valence single atoms on the WCx surface and improves the electronic orbital energy level distribution of the active sites. As expected, the representative Ru-WCx exhibits superior mass activities of 7.84 and 62.52 A mgRu -1 for the hydrogen oxidation and evolution reactions (HOR/HER), respectively. In-depth mechanistic analysis demonstrates that an ideal dual-sites cooperative mechanism achieves a suitable adsorption balance of Had and OHad , resulting in an energetically favorable Volmer step. This work offers new guidance for the precise construction of highly active SACs.

10.
Adv Mater ; 35(48): e2305939, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37671910

ABSTRACT

The continuous oxidation and leachability of active sites in Ru-based catalysts hinder practical application in proton-exchange membrane water electrolyzers (PEMWE). Herein, robust inter-doped tungsten-ruthenium oxide heterostructures [(Ru-W)Ox ] fabricated by sequential rapid oxidation and metal thermomigration processes are proposed to enhance the activity and stability of acidic oxygen evolution reaction (OER). The introduction of high-valent W species induces the valence oscillation of the Ru sites during OER, facilitating the cyclic transition of the active metal oxidation states and maintaining the continuous operation of the active sites. The preferential oxidation of W species and electronic gain of Ru sites in the inter-doped heterostructure significantly stabilize RuOx on WOx substrates beyond the Pourbaix stability limit of bare RuO2 . Furthermore, the asymmetric Ru-O-W active units are generated around the heterostructure interface to adsorb the oxygen intermediates synergistically, enhancing the intrinsic OER activity. Consequently, the inter-doped (Ru-W)Ox heterostructures not only demonstrate an overpotential of 170 mV at 10 mA cm-2 and excellent stability of 300 h in acidic electrolytes but also exhibit the potential for practical applications, as evidenced by the stable operation at 0.5 A cm-2 for 300 h in PEMWE.

11.
Small ; 19(48): e2304200, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37525334

ABSTRACT

Molybdenum selenium (MoSe2 ) has tremendous potential in potassium-ion batteries (PIBs) due to its large interlayer distance, favorable bandgap, and high theoretical specific capacity. However, the poor conductivity and large K+ insertion/extraction in MoSe2 inevitably leads to sluggish reaction kinetics and poor structural stability. Herein, Coinduced engineering is employed to illuminate high-conductivity electron pathway and mobile ion diffusion of MoSe2 nanosheets anchored on reduced graphene oxide substrate (Co-MoSe2 /rGO). Benefiting from the activated electronic conductivity and ion diffusion kinetics, and an expanded interlayer spacing resulting from Co doping, combined with the interface coupling with highly conductive reduced graphene oxide (rGO) substrate through Mo-C bonding, the Co-MoSe2 /rGO anode demonstrates remarkable reversible capacity, superior rate capability, and stable long-term cyclability for potassium storage, as well as superior energy density and high power density for potassium-ion capacitors. Systematic performance measurement, dynamic analysis, in-situ/ex-situ measurements, and density functional theory (DFT) calculations elucidate the performance-enhancing mechanism of Co-MoSe2 /rGO in view of the electronic and ionic transport kinetics. This work offers deep atomic insights into the fundamental factors of electrodes for potassium-ion batteries/capacitors with superior electrochemical performance.

12.
J Colloid Interface Sci ; 649: 203-213, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37348340

ABSTRACT

Dual-carbon engineering combines the advantages of graphite and hard carbon, thereby optimizing the potassium storage performance of carbon materials. However, dual-carbon engineering faces challenges balancing specific capacity, capability, and stability. In this study, we present a coordination engineering of Zn-N4 moieties on dual-carbon through additional P doping, which effectively modulates the symmetric charge distribution around the Zn center. Experimental results and theoretical calculations unveil that additional P doping induces an optimized electronic structure of the Zn-N4 moieties, thus enhancing K+ adsorption. A single-atom Zn metal coordinated with nitrogen and phosphorus reduces the K+ diffusion barrier and improves fast K+ migration kinetics. Consequently, Zn-NPC@rGO exhibits high reversible specific capacities, excellent rate capability, and impressive cycling stability, and remarkable power and energy densities for potassium-ion capacitors (PICs). This study provides insights into crucial factors for enhancing potassium storage performance.

13.
Small ; 19(30): e2302238, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37191328

ABSTRACT

Developing efficient and durable electrocatalysts for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzers represents a significant challenge. Herein, the cobalt-ruthenium oxide nano-heterostructures are successfully synthesized on carbon cloth (CoOx /RuOx -CC) for acidic OER through a simple and fast solution combustion strategy. The rapid oxidation process endows CoOx /RuOx -CC with abundant interfacial sites and defect structures, which enhances the number of active sites and the charge transfer at the electrolyte-catalyst interface, promoting the OER kinetics. Moreover, the electron supply effect of the CoOx support allows electrons to transfer from Co to Ru sites during the OER process, which is beneficial to alleviate the ion leaching and over-oxidation of Ru sites, improving the catalyst activity and stability. As a self-supported electrocatalyst, CoOx /RuOx -CC displays an ultralow overpotential of 180 mV at 10 mA cm-2 for OER. Notably, the PEM electrolyzer using CoOx /RuOx -CC as the anode can be operated at 100 mA cm-2 stably for 100 h. Mechanistic analysis shows that the strong catalyst-support interaction is beneficial to redistribute the electronic structure of RuO bond to weaken its covalency, thereby optimizing the binding energy of OER intermediates and lowering the reaction energy barrier.

14.
Adv Mater ; 35(36): e2303109, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37247611

ABSTRACT

High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature-tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy-rich porous perovskite oxide (CaMnO3 ) nanofibers coated with reduced graphene oxide coating (V-CMO/rGO) are developed as the air electrode catalyst for low-temperature and knittable Zn-air batteries. V-CMO/rGO exhibits top-level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V-CMO/rGO drives knittable and flexible Zn-air batteries under a low temperature of -40 °C with high peak power density of 56 mW cm-2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment.

15.
Plant J ; 115(1): 97-107, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36995355

ABSTRACT

Identification of unknown metabolites and their biosynthetic genes is an active research area in plant specialized metabolism. By following a gene-metabolite association from a genome-wide association study of Arabidopsis stem metabolites, we report a previously unknown metabolite, 2-hydroxy-2-(1-hydroxyethyl)pentanoic acid glucoside, and demonstrated that UGT76F1 is responsible for its production in Arabidopsis. The chemical structure of the glucoside was determined by a series of analyses, including tandem MS, acid and base hydrolysis, and NMR spectrometry. T-DNA knockout mutants of UGT76F1 are devoid of the glucoside but accumulate increased levels of the aglycone. 2-hydroxy-2-(1-hydroxyethyl)pentanoic acid is structurally related to the C7-necic acid component of lycopsamine-type pyrrolizidine alkaloids such as trachelantic acid and viridifloric acid. Feeding norvaline greatly enhances the accumulation of 2-hydroxy-2-(1-hydroxyethyl)pentanoic acid glucoside in wild-type but not the UGT76F1 knockout mutant plants, providing evidence for an orthologous C7-necic acid biosynthetic pathway in Arabidopsis despite the apparent lack of pyrrolizidine alkaloids.


Subject(s)
Arabidopsis , Pyrrolizidine Alkaloids , Arabidopsis/genetics , Arabidopsis/metabolism , Genome-Wide Association Study , Pyrrolizidine Alkaloids/chemistry , Pyrrolizidine Alkaloids/metabolism , Plants/metabolism , Glucosides
16.
Adv Sci (Weinh) ; 10(7): e2206096, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36594619

ABSTRACT

The construction of strong interactions and synergistic effects between small metal clusters and supports offers a great opportunity to achieve high-performance and cost-effective heterogeneous catalysis, however, studies on its applications in electrocatalysis are still insufficient. Herein, it is reported that W18 O49 nanowires supported sub-nanometric Ru clusters (denoted as Ru SNC/W18 O49 NWs) constitute an efficient bifunctional electrocatalyst for hydrogen evolution/oxidation reactions (HER and HOR) under acidic condition. Microstructural analyses, X-ray absorption spectroscopy, and density functional theory (DFT) calculations reveal that the Ru SNCs with an average RuRu coordination number of 4.9 are anchored to the W18 O49 NWs via RuOW bonds at the interface. The strong metal-support interaction leads to the electron-deficient state of Ru SNCs, which enables a modulated RuH strength. Furthermore, the unique proton transport capability of the W18 O49 also provides a potential migration channel for the reaction intermediates. These components collectively enable the remarkable performance of Ru SNC/W18 O49 NWs for hydrogen electrocatalysis with 2.5 times of exchange current density than that of carbon-supported Ru nanoparticles, and even rival the state-of-the-art Pt catalyst. This work provides a new prospect for the development of supported sub-nanometric metal clusters for efficient electrocatalysis.

17.
ACS Nano ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36622287

ABSTRACT

The scalable production of inexpensive, efficient, and robust catalysts for oxygen evolution reaction (OER) that can deliver high current densities at low potentials is critical for the industrial implementation of water splitting technology. Herein, a series of metal oxides coupled with Fe2O3 are in situ grown on iron foam massively via an ultrafast combustion approach for a few seconds. Benefiting from the three-dimensional nanosheet array framework and the heterojunction structure, the self-supporting electrodes with abundant active centers can regulate mass transport and electronic structure for prompting OER activity at high current density. The optimized Ni(OH)2/Fe2O3 with robust structure can deliver a high current density of 1000 mA cm-2 at the overpotential as low as 271 mV in 1.0 M KOH for up to 1500 h. Theoretical calculation demonstrates that the strong electronic modulation plays a crucial part in the hybrid by optimizing the adsorption energy of the intermediate, thereby enhancing the efficiency of oxygen evolution. This work proposes a method to construct cheap and robust catalysts for practical application in energy conversion and storage.

18.
ACS Appl Mater Interfaces ; 14(46): 52035-52045, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36346965

ABSTRACT

Ni-containing heteropolyvanadate, Na6[NiV14O40], was synthesized for the first time to be applied in high-energy lithium storage applications as a negative electrode material. Na6[NiV14O40] can be prepared via a facile solution process that is suitable for low-cost mass production. The as-prepared electrode provided a high capacity of approximately 700 mAh g-1 without degradation for 400 cycles, indicating excellent cycling stability. The mechanism of charge storage was investigated using operando X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), transition X-ray microscopy (TXM), and density functional theory (DFT) calculations. The results showed that V5+ was reduced to V2+ during lithiation, indicating that Na6[NiV14O40] is an insertion-type material. In addition, Na6[NiV14O40] maintained its amorphous structure with negligible volume expansion/contraction during cycling. Employed as the negative electrode in a lithium-ion battery (LIB), the Na6[NiV14O40]//LiFePO4 full cell had a high energy density of 300 W h kg-1. When applied in a lithium-ion capacitor, the Na6[NiV14O40]//expanded mesocarbon microbead full cell displayed energy densities of 218.5 and 47.9 W h kg-1 at power densities of 175.7 and 7774.2 W kg-1, respectively. These findings reveal that the negative electrode material Na6[NiV14O40] is a promising candidate for Li-ion storage applications.

19.
Nat Commun ; 13(1): 6006, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224249

ABSTRACT

Architected materials that actively respond to external stimuli hold tantalizing prospects for applications in energy storage, wearable electronics, and bioengineering. Molybdenum disulfide, an excellent two-dimensional building block, is a promising candidate for lithium-ion battery anode. However, the stacked and brittle two-dimensional layered structure limits its rate capability and electrochemical stability. Here we report the dewetting-induced manufacturing of two-dimensional molybdenum disulfide nanosheets into a three-dimensional foam with a structural hierarchy across seven orders of magnitude. Our molybdenum disulfide foam provides an interpenetrating network for efficient charge transport, rapid ion diffusion, and mechanically resilient and chemically stable support for electrochemical reactions. These features induce a pseudocapacitive energy storage mechanism involving molybdenum redox reactions, confirmed by in-situ X-ray absorption near edge structure. The extraordinary electrochemical performance of molybdenum disulfide foam outperforms most reported molybdenum disulfide-based Lithium-ion battery anodes and state-of-the-art materials. This work opens promising inroads for various applications where special properties arise from hierarchical architecture.

20.
Curr Microbiol ; 79(7): 194, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35579716

ABSTRACT

A Gram-positive-staining, strictly aerobic, motile, ellipsoidal endospore-forming bacterial strain, designated CHY01T, was isolated from the Chishui river in a section of Maotai Town, Guizhou Province, Southwest China. Strain CHY01T was found to grow optimally at pH 8.0 and 28 °C. The 16S rRNA gene sequence analysis indicated that strain CHY01T belonged to the genus Brevibacillus and clustered with the type strain of Brevibacillus panacihumi, with which it exhibited 16S rRNA gene sequence similarity values of 97.8%. The predominant respiratory quinone was MK-7, and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The major fatty acids were C14:0, iso-C15:0, anteiso-C15:0, C16:0, C15:1iso-H and/or C13:0 3-OH, and C16:1ω7c and/or C16:1ω6c. Genome sequencing revealed a genome size of 6.1 Mbp and a G + C content of 50.6%. The results of physiological and biochemical tests allowed strain CHY01T to be distinguished genotypically and phenotypically from Brevibacillus species with validly published names. Pairwise determined whole-genome average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values suggested that strain CHY01T represents a new species, for which we propose the name Brevibacillus dissolubilis sp. nov. with the type strain CHY01T (= CGMCC 1.15916 T = KCTC 33863 T).


Subject(s)
Brevibacillus , Bacterial Typing Techniques , Brevibacillus/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fresh Water , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...