Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Mol Med (Berl) ; 102(5): 693-707, 2024 05.
Article in English | MEDLINE | ID: mdl-38492027

ABSTRACT

Physical therapy is extensively employed in clinical settings. Nevertheless, the absence of suitable animal models has resulted in an incomplete understanding of the in vivo mechanisms and cellular distribution that respond to physical stimuli. The objective of this research was to create a mouse model capable of indicating the cells affected by physical stimuli. In this study, we successfully established a mouse line based on the heat shock protein 70 (Hsp70) promoter, wherein the expression of CreERT2 can be induced by physical stimuli. Following stimulation of the mouse tail, ear, or cultured calvarias with heat shock (generated by heating, ultrasound, or laser), a distinct Cre-mediated excision was observed in cells stimulated by these physical factors with minimal occurrence of leaky reporter expression. The application of heat shock to Hsp70-CreERT2; FGFR2-P253R double transgenic mice or Hsp70-CreERT2 mice infected with AAV-BMP4 at calvarias induced the activation of Cre-dependent mutant FGFR2-P253R or BMP4 respectively, thereby facilitating the premature closure of cranial sutures or the repair of calvarial defects. This novel mouse line holds significant potential for investigating the underlying mechanisms of physical therapy, tissue repair and regeneration, lineage tracing, and targeted modulation of gene expression of cells in local tissue stimulated by physical factor at the interested time points. KEY MESSAGES: In the study, an Hsp70-CreERT2 transgenic mouse was generated for heat shock-induced gene modulation. Heat shock, ultrasound, and laser stimulation effectively activated Cre expression in Hsp70-CreERT2; reporter mice, which leads to deletion of floxed DNA sequence in the tail, ear, and cultured calvaria tissues of mice. Local laser stimuli on cultured calvarias effectively induce Fgfr2-P253R expression in Hsp70-mTmG-Fgfr2-P253R mice and result in accelerated premature closure of cranial suture. Heat shock activated AAV9-FLEX-BMP4 expression and subsequently promoted the repair of calvarial defect of Hsp70-CreERT2; Rosa26-mTmG mice.


Subject(s)
Bone Morphogenetic Protein 4 , HSP70 Heat-Shock Proteins , Mice, Transgenic , Promoter Regions, Genetic , Animals , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Mice , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Heat-Shock Response/genetics , Skull/metabolism , Gene Expression Regulation , Integrases/metabolism , Integrases/genetics
2.
Osteoporos Int ; 35(6): 1007-1017, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430243

ABSTRACT

The study, using data from Chongqing, China, and employing Mendelian randomization along with bioinformatics, establishes a causal link between asthma and osteoporosis, beyond glucocorticoid effects. Asthma may contribute to osteoporosis by accelerating bone turnover through inflammatory factors, disrupting the coupling between osteoblasts and osteoclasts, ultimately leading to osteoporosis. INTRODUCTION: Asthma and osteoporosis are prevalent health conditions with substantial public health implications. However, their potential interplay and the underlying mechanisms have not been fully elucidated. Previous research has primarily focused on the impact of glucocorticoids on osteoporosis, often overlooking the role of asthma itself. METHODS: We conducted a multi-stage stratified random sampling in Chongqing, China and excluded individuals with a history of glucocorticoid use. Participants underwent comprehensive health examinations, and their clinical data, including asthma status, were recorded. Logistic regression and Mendelian randomization were employed to investigate the causal link between asthma and osteoporosis. Furthermore, bioinformatics analyses and serum biomarker assessments were conducted to explore potential mechanistic pathways. RESULTS: We found a significant association between asthma and osteoporosis, suggesting a potential causal link. Mendelian Randomization analysis provided further support for this causal link. Bioinformatics analyses revealed that several molecular pathways might mediate the impact of asthma on bone health. Serum alkaline phosphatase levels were significantly elevated in the asthma group, suggesting potential involvement in bone turnover. CONCLUSION: Our study confirms a causal link between asthma and osteoporosis and highlights the importance of considering asthma in osteoporosis prediction models. It also suggests that asthma may accelerate osteoporosis by increasing bone turnover through inflammatory factors, disrupting the coupling between osteoblasts and osteoclasts, ultimately leading to bone loss.


Subject(s)
Asthma , Computational Biology , Mendelian Randomization Analysis , Osteoporosis , Humans , Mendelian Randomization Analysis/methods , Asthma/genetics , Asthma/physiopathology , Asthma/epidemiology , Osteoporosis/genetics , Osteoporosis/etiology , Osteoporosis/epidemiology , Osteoporosis/physiopathology , Female , Middle Aged , Computational Biology/methods , Male , Cross-Sectional Studies , Aged , Bone Remodeling/physiology , Bone Remodeling/genetics , Adult , Biomarkers/blood , Polymorphism, Single Nucleotide , China/epidemiology , Genetic Predisposition to Disease , Osteoclasts , Bone Density/genetics , Bone Density/physiology
3.
Chin J Traumatol ; 27(3): 168-172, 2024 May.
Article in English | MEDLINE | ID: mdl-38262890

ABSTRACT

PURPOSE: To identify the risk factors for training-related lower extremity muscle injuries in young males by a non-invasive method of body composition analysis. METHODS: A total of 282 healthy young male volunteers aged 18 - 20 years participated in this cohort study. Injury location, degree, and injury rate were adjusted by a questionnaire based on the overuse injury assessment methods used in epidemiological studies of sports injuries. The occurrence of training injuries is monitored and diagnosed by physicians and treated accordingly. The body composition was measured using the BodyStat QuadScan 4000 multifrequency Bio-impedance system at 5, 50, 100 and 200 kHz to obtain 4 impedance values. The Shapiro-Wilk test was used to check whether the data conformed to a normal distribution. Data of normal distribution were shown as mean ± SD and analyzed by t-test, while those of non-normal distribution were shown as median (Q1, Q3) and analyzed by Wilcoxon rank sum test. The receiver operator characteristic curve and logistic regression analysis were performed to investigate risk factors for developing training-related lower extremity injuries and accuracy. RESULTS: Among the 282 subjects, 78 (27.7%) developed training injuries. Lower extremity training injuries revealed the highest incidence, accounting for 23.4% (66 cases). These patients showed higher percentages of lean body mass (p = 0.001), total body water (TBW, p = 0.006), extracellular water (p = 0.020) and intracellular water (p = 0.010) as well as a larger ratio of basal metabolic rate/total weight (p = 0.006), compared with those without lower extremity muscle injuries. On the contrary, the percentage of body fat (p = 0.001) and body fat mass index (p = 0.002) were lower. Logistic regression analysis showed that TBW percentage > 65.35% (p = 0.050, odds ratio = 3.114) and 3rd space water > 0.95% (p = 0.045, odds ratio = 2.342) were independent risk factors for lower extremity muscle injuries. CONCLUSION: TBW percentage and 3rd space water measured with bio-impedance method are potential risk factors for predicting the incidence of lower extremity muscle injuries in young males following training.


Subject(s)
Body Water , Lower Extremity , Muscle, Skeletal , Humans , Male , Risk Factors , Young Adult , Adolescent , Lower Extremity/injuries , Muscle, Skeletal/injuries , Athletic Injuries/epidemiology , Body Composition , Cohort Studies
4.
Adv Sci (Weinh) ; 11(7): e2306143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38083984

ABSTRACT

Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances. In this study, a novel recombinant protein is constructed that can be anchored on an exosome membrane with the purpose of targeting pro-inflammatory macrophages via antigen recognition, which is named AnCar-ExoLaIMTS . The data indicate that the phagocytosis efficiencies of pro-inflammatory macrophages for different AnCar-ExoLaIMTS show obvious differences. The AnCar-ExoLaIMTS3 has the best targeting ability for pro-inflammatory macrophages in vitro and in vivo. Mechanically, AnCar-ExoLaIMTS3 can specifically recognize the leucine-rich repeat domain of the TLR4 receptor, and then enter into pro-inflammatory macrophages via the TLR4-mediated receptor endocytosis pathway. Moreover, AnCar-ExoLaIMTS3 can efficiently deliver therapeutic cargo to pro-inflammatory macrophages and inhibit the synovial inflammatory response via downregulation of HIF-1α level, thus ameliorating the severity of arthritis in vivo. Collectively, the work established a novel gene/drug delivery system that can specifically target pro-inflammatory macrophages, which may be beneficial for the treatments of arthritis and other inflammatory diseases.


Subject(s)
Arthritis , Macrophages , Humans , Macrophages/metabolism , Arthritis/drug therapy , Phagocytosis , Anti-Inflammatory Agents/therapeutic use , Cell Communication
5.
Bone ; 174: 116817, 2023 09.
Article in English | MEDLINE | ID: mdl-37268269

ABSTRACT

Osteoporosis (OP) is the most common skeletal disease in middle-aged and elderly people. A comprehensive understanding of the pathogenesis of osteoporosis is important. Fibroblast growth factor receptor 1 (FGFR1) is an important molecule for skeletal development and bone remodeling. Osteocytes are the most numerous cells in bone and play critical roles in bone homeostasis, however the effect of FGFR1 on osteocytes is still unclear. To clarify the direct effects of FGFR1 on osteocytes, we conditionally deleted Fgfr1 in osteocytes with Dentin matrix protein 1 (Dmp1)-Cre. We found that mice lacking Fgfr1 in osteocytes (Fgfr1f/f;Dmp-cre, MUT) showed increased trabecular bone mass at 2 and 6 months of age, which resulted from enhanced bone formation and decreased bone resorption. Furthermore, the cortical bone was thicker in WT mice than that in MUT mice at 2 and 6 months of age. Histological analysis showed that MUT mice had a decreased number of osteocytes but an increased number of osteocyte dendrites. We further found that mice lacking Fgfr1 in osteocytes showed enhanced activation of ß-catenin signaling. The expression of sclerostin, an inhibitor of Wnt/ß-catenin signaling, was obviously decreased in MUT mice. Furthermore, we found that FGFR1 can inhibit the expression of ß-catenin and decrease the activity of ß-catenin signaling. In brief, our study showed that FGFR1 in osteocytes can regulate bone mass by regulating Wnt/ß-catenin signaling, providing genetic evidence that FGFR1 plays essential roles in osteocytes during bone remodeling and suggesting that FGFR1 is a potential therapeutic target for the prevention of bone loss.


Subject(s)
Osteocytes , Osteoporosis , Animals , Mice , beta Catenin/metabolism , Osteocytes/metabolism , Osteoporosis/pathology , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Wnt Signaling Pathway
6.
J Orthop Translat ; 36: 164-176, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36263384

ABSTRACT

Background: Vismodegib, as an exogenous Indian hedgehog (Ihh) antagonist, has been approved by the Food and Drug Administration (FDA) for the clinical treatment of patients with basal cell carcinoma, and previous observations implicate the potential therapeutic of vismodegib in osteoarthritis treatment. However, there is no direct evidence for the role of Ihh signaling in intervertebral discs (IVDs) homeostasis of adult mice. The aim of the present study is to assess the effect of systemic administration of Smoothened inhibitor (SMOi) - vismodegib on IVDs homeostasis during the adult stage. Methods: The expression of glioma-associated oncogene homolog 1 (Gli1), the downstream targeting gene of Ihh signaling, in IVDs of adult mice after receiving systemic administration of SMOi was examined by immunohistochemistry. The pathological changes of vertebral bodies after SMOi treatment were evaluated by X-ray and micro-CT. The effects of SMOi on homeostasis of IVDs including cartilaginous endplates (CEP), growth plates (GP) and annulus fibrous (AF) were evaluated by histological analysis. The expressions of Aggrecan, Matrix metalloproteinase 13 (MMP13) and Runt-related transcription factor 2 (Runx2), in IVDs were also investigated by immunohistochemistry. Changes in chondrocyte apoptosis and proliferation in IVDs were evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and analyzing the expression of the cell proliferation antigen Ki-67. Results: Systemic administration of SMOi significantly decreased the expression of Gli1 in IVDs that indicating effective inhibition of Ihh signaling. Bone mass of vertebral bodies was diminished after SMOi treatment. Moreover, IVDs degeneration (IDD) like defects including CEP sclerosis, degenerative nucleus pulposus (NP) and fissure within AF, as well as narrowed or fused GP and loss bone mass of vertebral bodies was observed in SMOi-treated mice. The severity of IDD was time-dependent with the administration of SMOi treatment after 2-8 weeks. The expressions of Aggrecan, MMP13 and Runx2 in IVDs of mice receiving SMOi treatment were significantly decreased. In addition, chondrocyte apoptosis was significantly enhanced, while chondrocyte proliferation was significantly inhibited. Conclusions: Our study propose that systemic administration of vismodegib damages IVDs homeostasis via inhibition of Ihh signaling in adult mice. The clinical application of Ihh signaling antagonists such as vismodegib should be careful considering these side adverse. The Translational Potential of this Article: Vismodegib as an exogenous antagonist of Ihh signaling has been approved by the FDA for the clinical treatment of patients with basal cell carcinoma. However, it is still unknown whether vismodegib will has adverse effects on the patient or animal model of IVDs cartilage homeostasis. Based on our study, systemic administration of vismodegib damages IVDs homeostasis via inhibition of Ihh signaling in adult mice and special attention should be paid to the clinical application of vismodegib.

7.
Stem Cell Res Ther ; 13(1): 227, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659742

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) can cause low back pain, a major public health concern. IVDD is characterized with loss of cells especially those in nucleus pulposus (NP), due to the limited proliferative potential and regenerative ability. Few studies, however, have been carried out to investigate the in vivo proliferation events of NP cells and the cellular contribution of a specific subpopulation of NP during postnatal growth or regeneration. METHODS: We generated FGFR3-3*Flag-IRES-GFP mice and crossed FGFR3-CreERT2 mice with Rosa26-mTmG, Rosa26-DTA and Rosa26-Confetti mice, respectively, to perform inducible genetic tracing studies. RESULTS: Expression of FGFR3 was found in the outer region of NP with co-localized expressions of proliferating markers. By fate mapping studies, FGFR3-positive (FGFR3+) NP cells were found proliferate from outer region to inner region of NP during postnatal growth. Clonal lineage tracing by Confetti mice and ablation of FGFR3·+ NP cells by DTA mice further revealed that the expansion of the FGFR3+ cells was required for the morphogenesis and homeostasis of postnatal NP. Moreover, in degeneration and regeneration model of mouse intervertebral disc, FGFR3+ NP cells underwent extensive expansion during the recovery stage. CONCLUSION: Our present work demonstrates that FGFR3+ NP cells are novel subpopulation of postnatal NP with long-existing proliferative capacity shaping the adult NP structure and participating in the homeostasis maintenance and intrinsic repair of NP. These findings may facilitate the development of new therapeutic approaches for IVD regeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Low Back Pain , Nucleus Pulposus , Animals , Cells, Cultured , Intervertebral Disc Degeneration/therapy , Mice , Nucleus Pulposus/metabolism
8.
Bone Res ; 10(1): 2, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34983922

ABSTRACT

The intervertebral disc (IVD) is the largest avascular tissue. Hypoxia-inducible factors (HIFs) play essential roles in regulating cellular adaptation in the IVD under physiological conditions. Disc degeneration disease (DDD) is one of the leading causes of disability, and current therapies are ineffective. This study sought to explore the role of HIFs in DDD pathogenesis in mice. The findings of this study showed that among HIF family members, Hif1α was significantly upregulated in cartilaginous endplate (EP) and annulus fibrosus (AF) tissues from human DDD patients and two mouse models of DDD compared with controls. Conditional deletion of the E3 ubiquitin ligase Vhl in EP and AF tissues of adult mice resulted in upregulated Hif1α expression and age-dependent IVD degeneration. Aberrant Hif1α activation enhanced glycolytic metabolism and suppressed mitochondrial function. On the other hand, genetic ablation of the Hif1α gene delayed DDD pathogenesis in Vhl-deficient mice. Administration of 2-methoxyestradiol (2ME2), a selective Hif1α inhibitor, attenuated experimental IVD degeneration in mice. The findings of this study show that aberrant Hif1α activation in EP and AF tissues induces pathological changes in DDD, implying that inhibition of aberrant Hif1α activity is a potential therapeutic strategy for DDD.

9.
Int J Biol Sci ; 17(15): 4140-4153, 2021.
Article in English | MEDLINE | ID: mdl-34803488

ABSTRACT

Systemic application of glucocorticoids is an essential anti-inflammatory and immune-modulating therapy for severe inflammatory or autoimmunity conditions. However, its long-term effects on articular cartilage of patients' health need to be further investigated. In this study, we studied the effects of dexamethasone (Dex) on the homeostasis of articular cartilage and the progress of destabilization of medial meniscus (DMM)-induced osteoarthritis (OA) in adult mice. Long-term administration of Dex aggravates the proteoglycan loss of articular cartilage and drastically accelerates cartilage degeneration under surgically induced OA conditions. In addition, Dex increases calcium content in calcified cartilage layer of mice and the samples from OA patients with a history of long-term Dex treatment. Moreover, long term usage of Dex results in decrease subchondral bone mass and bone density. Further studies showed that Dex leads to calcification of extracellular matrix of chondrocytes partially through activation of AKT, as well as promotes apoptosis of chondrocytes in calcified cartilage layer. Besides, Dex weakens the stress-response autophagy with the passage of time. Taken together, our data indicate that long-term application of Dex may predispose patients to OA and or even accelerate the OA disease progression development of OA patients.


Subject(s)
Apoptosis/drug effects , Chondrocytes/drug effects , Chondrocytes/physiology , Dexamethasone/adverse effects , Extracellular Matrix/drug effects , Osteoarthritis/etiology , Animals , Calcinosis , Dexamethasone/administration & dosage , Drug Administration Schedule , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Homeostasis , Male , Mice , Mice, Inbred C57BL , Osteoarthritis/pathology
10.
Nat Commun ; 12(1): 4391, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282140

ABSTRACT

Acquired heterotopic ossification (HO) is the extraskeletal bone formation after trauma. Various mesenchymal progenitors are reported to participate in ectopic bone formation. Here we induce acquired HO in mice by Achilles tenotomy and observe that conditional knockout (cKO) of fibroblast growth factor receptor 3 (FGFR3) in Col2+ cells promote acquired HO development. Lineage tracing studies reveal that Col2+ cells adopt fate of lymphatic endothelial cells (LECs) instead of chondrocytes or osteoblasts during HO development. FGFR3 cKO in Prox1+ LECs causes even more aggravated HO formation. We further demonstrate that FGFR3 deficiency in LECs leads to decreased local lymphatic formation in a BMPR1a-pSmad1/5-dependent manner, which exacerbates inflammatory levels in the repaired tendon. Local administration of FGF9 in Matrigel inhibits heterotopic bone formation, which is dependent on FGFR3 expression in LECs. Here we uncover Col2+ lineage cells as an origin of lymphatic endothelium, which regulates local inflammatory microenvironment after trauma and thus influences HO development via FGFR3-BMPR1a pathway. Activation of FGFR3 in LECs may be a therapeutic strategy to inhibit acquired HO formation via increasing local lymphangiogenesis.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Lymphatic Vessels/metabolism , Ossification, Heterotopic/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Achilles Tendon , Animals , Disease Models, Animal , Endothelial Cells/metabolism , Endothelium, Lymphatic/metabolism , Gene Knockdown Techniques , Lymphangiogenesis , Male , Mesenchymal Stem Cells , Mice , Tenotomy
11.
J Cell Physiol ; 236(7): 5278-5292, 2021 07.
Article in English | MEDLINE | ID: mdl-33452687

ABSTRACT

Osteoarthritis (OA) is the most common joint disease. The surface of joint cartilage is a defensive and first affected structure of articular cartilage (AC) during the pathogenesis of OA. Alk5 signaling is critical for maintaining AC homeostasis, however, the role and underlying mechanism for the involvement of Alk5 signaling in the phenotypes of articular cartilage stem cells (ACSCs) at the surface of AC is still unclear. The role of Alk5 in OA development was explored using an ACSCs-specific Alk5-deficient (cKO) mouse model. Alterations in cartilage structure were evaluated histologically. Senescence was detected by SA-ß-gal, while reactive oxygen species (ROS), MitoTracker, and LysoTracker staining were used to detect changes related to senescence. In addition, mice were injected intra-articularly with ganciclovir to limit the detrimental roles of senescent cells (SnCs). Alk5 cKO mice showed a decreased number of the slow-cell cycle cells and less lubricant secretion at the surface accompanied with drastically accelerated cartilage degeneration under ageing and surgically induced OA conditions. Further studies showed that Alk5 deficient ACSCs exhibited senescence-like manifestations including decreased proliferation and differentiation, more SA-ß-gal-positive cells and ROS production, as well as significantly swollen mitochondria and lysosome breakdown. We further found that local limitation of the detrimental roles of SnCs can attenuate the development of posttraumatic OA. Taken together, our findings suggest that Alk5 signaling acts as an important regulator of the SnCs in the superficial layer during AC maintenance and OA initiation.


Subject(s)
Cartilage, Articular/metabolism , Cellular Senescence/physiology , Osteoarthritis/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Stem Cells/metabolism , Animals , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Cartilage, Articular/pathology , Mice , Mice, Knockout , Osteoarthritis/pathology , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism
12.
Signal Transduct Target Ther ; 5(1): 181, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32879300

ABSTRACT

Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.


Subject(s)
Embryonic Development/genetics , Fibroblast Growth Factors/genetics , Homeostasis/genetics , Receptors, Fibroblast Growth Factor/genetics , Apoptosis/genetics , Cell Differentiation/genetics , Cell Proliferation , Humans , Neoplasms/genetics , Signal Transduction/genetics
13.
Theranostics ; 10(16): 7111-7130, 2020.
Article in English | MEDLINE | ID: mdl-32641982

ABSTRACT

CATSHL syndrome, characterized by camptodactyly, tall stature and hearing loss, is caused by loss-of-function mutations of fibroblast growth factor receptors 3 (FGFR3) gene. Most manifestations of patients with CATSHL syndrome start to develop in the embryonic stage, such as skeletal overgrowth, craniofacial abnormalities, however, the pathogenesis of these phenotypes especially the early maldevelopment remains incompletely understood. Furthermore, there are no effective therapeutic targets for this skeleton dysplasia. Methods: We generated fgfr3 knockout zebrafish by CRISPR/Cas9 technology to study the developmental mechanisms and therapeutic targets of CATSHL syndrome. Several zebrafish transgenic lines labeling osteoblasts and chondrocytes, and live Alizarin red staining were used to analyze the dynamical skeleton development in fgfr3 mutants. Western blotting, whole mount in situ hybridization, Edu labeling based cell proliferation assay and Wnt/ß-catenin signaling antagonist were used to explore the potential mechanisms and therapeutic targets. Results: We found that fgfr3 mutant zebrafish, staring from early development stage, showed craniofacial bone malformation with microcephaly and delayed closure of cranial sutures, chondroma-like lesion and abnormal development of auditory sensory organs, partially resembling the clinical manifestations of patients with CATSHL syndrome. Further studies showed that fgfr3 regulates the patterning and shaping of pharyngeal arches and the timely ossification of craniofacial skeleton. The abnormal development of pharyngeal arch cartilage is related to the augmented hypertrophy and disordered arrangement of chondrocytes, while decreased proliferation, differentiation and mineralization of osteoblasts may be involved in the delayed maturation of skull bones. Furthermore, we revealed that deficiency of fgfr3 leads to enhanced IHH signaling and up-regulated canonical Wnt/ß-catenin signaling, and pharmacological inhibition of Wnt/ß-catenin could partially alleviate the phenotypes of fgfr3 mutants. Conclusions: Our study further reveals some novel phenotypes and underlying developmental mechanism of CATSHL syndrome, which deepens our understanding of the pathogenesis of CATSHL and the role of fgfr3 in skeleton development. Our findings provide evidence that modulation of Wnt/ß-catenin activity could be a potential therapy for CATSHL syndrome and related skeleton diseases.


Subject(s)
Bone Diseases, Developmental/genetics , Chondrocytes/pathology , Chondrogenesis/genetics , Hand Deformities, Congenital/genetics , Hearing Loss/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Skull/embryology , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , Bone Diseases, Developmental/pathology , CRISPR-Cas Systems/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Disease Models, Animal , Embryo, Nonmammalian , Gene Knockout Techniques , Hand Deformities, Congenital/pathology , Hearing Loss/pathology , Hedgehog Proteins/metabolism , Humans , Mutation , Wnt Signaling Pathway/genetics , Zebrafish
14.
Bone Res ; 8: 25, 2020.
Article in English | MEDLINE | ID: mdl-32596023

ABSTRACT

Exosomes participate in many physiological and pathological processes by regulating cell-cell communication, which are involved in numerous diseases, including osteoarthritis (OA). Exosomes are detectable in the human articular cavity and were observed to change with OA progression. Several joint cells, including chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and secrete exosomes that influence the biological effects of targeted cells. In addition, exosomes from stem cells can protect the OA joint from damage by promoting cartilage repair, inhibiting synovitis, and mediating subchondral bone remodeling. This review summarizes the roles and therapeutic potential of exosomes in OA and discusses the perspectives and challenges related to exosome-based treatment for OA patients in the future.

15.
Biomed Res Int ; 2020: 4307385, 2020.
Article in English | MEDLINE | ID: mdl-32596310

ABSTRACT

Synovitis plays an important role in the pathogenesis of arthritis, which is closely related to the joint swell and pain of patients. The purpose of this study was to investigate the anti-inflammatory effects of pulsed electromagnetic fields (PEMF) on synovitis and its underlying mechanisms. Destabilization of the medial meniscus (DMM) model and air pouch inflammation model were established to induce synovitis in C57BL/6 mice. The mice were then treated by PEMF (pulse waveform, 1.5 mT, 75 Hz, 10% duty cycle). The synovitis scores as well as the levels of IL-1ß and TNF-α suggested that PEMF reduced the severity of synovitis in vivo. Moreover, the proportion of neutrophils in the synovial-like layer was decreased, while the proportion of macrophages increased after PEMF treatment. In addition, the phagocytosis of apoptotic neutrophils by macrophages (efferocytosis) was enhanced by PEMF. Furthermore, the data from western blot assay showed that the phosphorylation of P38 was inhibited by PEMF. In conclusion, our current data show that PEMF noninvasively exhibits the anti-inflammatory effect on synovitis via upregulation of the efferocytosis in macrophages, which may be involved in the phosphorylation of P38.


Subject(s)
Electromagnetic Fields , Macrophages/radiation effects , Phagocytosis/radiation effects , Synovitis/radiotherapy , Animals , Apoptosis/radiation effects , Male , Mice, Inbred C57BL
16.
Nat Commun ; 11(1): 479, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980602

ABSTRACT

Congenital scoliosis (CS) is a complex genetic disorder characterized by vertebral malformations. The precise etiology of CS is not fully defined. Here, we identify that mutation in dual serine/threonine and tyrosine protein kinase (dstyk) lead to CS-like vertebral malformations in zebrafish. We demonstrate that the scoliosis in dstyk mutants is related to the wavy and malformed notochord sheath formation and abnormal axial skeleton segmentation due to dysregulated biogenesis of notochord vacuoles and notochord function. Further studies show that DSTYK is located in late endosomal/lysosomal compartments and is involved in the lysosome biogenesis in mammalian cells. Dstyk knockdown inhibits notochord vacuole and lysosome biogenesis through mTORC1-dependent repression of TFEB nuclear translocation. Inhibition of mTORC1 activity can rescue the defect in notochord vacuole biogenesis and scoliosis in dstyk mutants. Together, our findings reveal a key role of DSTYK in notochord vacuole biogenesis, notochord morphogenesis and spine development through mTORC1/TFEB pathway.


Subject(s)
Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Scoliosis/genetics , Zebrafish Proteins/genetics , Zebrafish/abnormalities , Zebrafish/genetics , Active Transport, Cell Nucleus , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Gene Knockdown Techniques , Humans , Models, Biological , Mutation , Notochord/abnormalities , Notochord/metabolism , Notochord/ultrastructure , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Scoliosis/congenital , Scoliosis/metabolism , Signal Transduction , Spine/abnormalities , Spine/metabolism , Transcription Factors/metabolism , Vacuoles/metabolism , Zebrafish/metabolism , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/metabolism
17.
Autophagy ; 16(7): 1262-1278, 2020 07.
Article in English | MEDLINE | ID: mdl-31500508

ABSTRACT

Synovitis is implicated in the pathology of osteoarthritis (OA) and significantly contributes to the development of OA. As a noninvasive physical therapy, low-intensity pulsed ultrasound (LIPUS) has been reported to possess anti-inflammatory effect in recent years. However, the role of LIPUS on synovitis of OA and the underlying mechanisms are little known. The present study showed that LIPUS ameliorated synovial inflammation in destabilization of the medial meniscus (DMM) mouse model and air pouch model, and alleviated pain gait patterns of DMM mouse. LIPUS dramatically inhibited the production of mature IL1B/IL-1ß (interleukin 1 beta) in vitro and in vivo. In addition, LIPUS upregulated the macroautophagy/autophagy level as well as accelerated the formation of an SQSTM1 (sequestosome1)-PKM (pyruvate kinase, muscle) complex in the lipopolysaccharide (LPS)-adenosine triphosphate (ATP)-treated macrophages. Besides, LIPUS downregulated the level of PKM2 in LPS-ATP-treated macrophages, which could be reversed by SQSTM1 knockdown. In brief, the present study for the first time demonstrates that LIPUS inhibits the production of mature IL1B partially via SQSTM1-dependent autophagic degradation of PKM2 in LPS-ATP-treated macrophages, which may further ameliorate the synovial inflammation and gait patterns in animal models. Our data provide new clues for the treatments of synovitis and other inflammatory diseases using LIPUS. ABBREVIATIONS: 3-MA: 3-methyladenene; ATG7: autophagy-related 7; ATP: adenosine triphosphate; BafA1: bafilomycin A1; BMDMs: bone marrow derived macrophages; CHX: cycloheximide; DMM: destabilization of the medial meniscus; ELISA: enzyme-linked immunosorbent assay; GFP: green fluorescent protein; IL1B/IL-1ß: interleukin 1 beta; LIPUS: low-intensity pulsed ultrasound; LIR: LC3-interacting region; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MDP: muramyl dipeptide; NFKB/NF-κB: nuclear factor kappa B; NLRP3: NLR family, pyrin domain containing 3; OA: osteoarthritis; PKM/PKM2: pyruvate kinase M1/2; PMA: phorbol-12-myristate-13-acetate; PYCARD/ASC; PYD and CARD domain containing; RFP: red fluorescent protein; siRNAs: small interfering RNAs; SQSTM1: sequestosome 1; TEM: transmission electron microscopy.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Autophagy , Interleukin-1beta/metabolism , Proteolysis , Pyruvate Kinase/metabolism , Sequestosome-1 Protein/metabolism , Adenosine Triphosphate/pharmacology , Animals , Autophagy/drug effects , Disease Models, Animal , Gait/drug effects , Humans , Inflammation/pathology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Menisci, Tibial/pathology , Menisci, Tibial/physiopathology , Mice , Mice, Inbred C57BL , Models, Biological , Pain/pathology , Pain/physiopathology , Proteolysis/drug effects , RAW 264.7 Cells , Synovial Membrane/pathology , THP-1 Cells , Ultrasonic Waves
18.
Ann Rheum Dis ; 79(1): 112-122, 2020 01.
Article in English | MEDLINE | ID: mdl-31662319

ABSTRACT

OBJECTIVES: This study aims to investigate the role and mechanism of FGFR3 in macrophages and their biological effects on the pathology of arthritis. METHODS: Mice with conditional knockout of FGFR3 in myeloid cells (R3cKO) were generated. Gait behaviours of the mice were monitored at different ages. Spontaneous synovial joint destruction was evaluated by digital radiographic imaging and µCT analysis; changes of articular cartilage and synovitis were determined by histological analysis. The recruitment of macrophages in the synovium was examined by immunostaining and monocyte trafficking assay. RNA-seq analysis, Western blotting and chemotaxis experiment were performed on control and FGFR3-deficient macrophages. The peripheral blood from non-osteoarthritis (OA) donors and patients with OA were analysed. Mice were treated with neutralising antibody against CXCR7 to investigate the role of CXCR7 in arthritis. RESULTS: R3cKO mice but not control mice developed spontaneous cartilage destruction in multiple synovial joints at the age of 13 months. Moreover, the synovitis and macrophage accumulation were observed in the joints of 9-month-old R3cKO mice when the articular cartilage was not grossly destructed. FGFR3 deficiency in myeloid cells also aggravated joint destruction in DMM mouse model. Mechanically, FGFR3 deficiency promoted macrophage chemotaxis partly through activation of NF-κB/CXCR7 pathway. Inhibition of CXCR7 could significantly reverse FGFR3-deficiency-enhanced macrophage chemotaxis and the arthritic phenotype in R3cKO mice. CONCLUSIONS: Our study identifies the role of FGFR3 in synovial macrophage recruitment and synovitis, which provides a new insight into the pathological mechanisms of inflammation-related arthritis.


Subject(s)
Cartilage, Articular/pathology , Chemokine CXCL12/metabolism , Macrophages/metabolism , Osteoarthritis/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptors, CXCR/genetics , Synovitis/genetics , Animals , Chemotaxis/genetics , Gait , Gene Expression Regulation , Humans , Joints/metabolism , Joints/pathology , Mice , Mice, Knockout , Monocytes/metabolism , Myeloid Cells , NF-kappa B/metabolism , Osteoarthritis/metabolism , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptors, CXCR/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Synovitis/pathology
19.
Cell Death Dis ; 10(7): 522, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31285423

ABSTRACT

Synovitis, a common clinical symptom for osteoarthritis (OA) patients, is highly related to OA pathological progression and pain manifestation. The activated synovial macrophages have been demonstrated to play an important role in synovitis, but the mechanisms about macrophage activation are still not clear. In this study, we found that the exosome-like vesicles from osteoarthritic chondrocytes could be a new biological factor to stimulate inflammasome activation and increase mature IL-1ß production in macrophages. The degraded cartilage explants produced more exosome-like vesicles than the nondegraded ones, while the exosome-like vesicles from chondrocytes could enter into joint synovium tissue and macrophages. Moreover, the exosome-like vesicles from osteoarthritic chondrocytes enhanced the production of mature IL-1ß in macrophages. These vesicles could inhibit ATG4B expression via miR-449a-5p, leading to inhibition of autophagy in LPS-primed macrophages. The decreased autophagy promoted the production of mitoROS, which further enhanced the inflammasome activation and subsequent IL-1ß processing. Ultimately, the increase of mature IL-1ß may aggravate synovial inflammation and promote the progression of OA disease. Our study provides a new perspective to understand the activation of synovial macrophages and synovitis in OA patients, which may be beneficial for therapeutic intervention in synovitis-related OA patients.


Subject(s)
Chondrocytes/pathology , Exosomes/metabolism , Macrophages/metabolism , Osteoarthritis/pathology , Synovitis/pathology , Animals , Autophagy/drug effects , Autophagy-Related Proteins/metabolism , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/metabolism , Cysteine Endopeptidases/metabolism , Exosomes/drug effects , Humans , Injections, Intra-Articular , Interleukin-1beta/metabolism , Macrophages/drug effects , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Tetradecanoylphorbol Acetate/pharmacology
20.
J Orthop Translat ; 17: 103-111, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31194037

ABSTRACT

OBJECTIVE: Scoliosis is a common disease characterized by spinal curvature with variable severities. There is no generally accepted theory about the physical origin of the spinal deformation of scoliosis. The aim of this study was to explore a new hypothesis suggesting that the curvatures in scoliosis may be associated with the imbalance growth between thoracic vertebral column and sternum. METHODS: We undertook a comparative computed tomography (CT) based morphology study of thoracic vertebrae and sternum of patients with adolescent idiopathic scoliosis (AIS) and age-gender matched normal subjects. We further measured the ratios between the lengths of the sternum and thoracic vertebra of mice with deficiency of fibroblast growth factor receptor 3 (FGFR3), which exhibit scoliosis. Three-week-old C57BL/6J mice were used to generate bipedal and sternal growth plate injury model. Radiographs and histological images were obtained to observe the presence of sternal and spinal deformity. RESULTS: There was a significant correlation between the severities of scoliosis and the ratios of the sternum to thoracic vertebral lengths. We also found that FGFR3 deficient mice showed smaller ratio of the sternum to thoracic vertebra lengths than that of the wild-type mice, which were similar with that of the AIS patients. Surgery-induced injuries of sternal growth plates can accelerate and aggravate the scoliosis in bipedal mice and imbalanced development of anterior and posterior thoracic occurred before the appearance of scoliosis. CONCLUSIONS: Our findings suggest that the imbalanced growth between the thoracic vertebral column and the sternum is an important causative factor for the pathogenesis of scoliosis including AIS. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Imbalanced growth between the thoracic vertebral column and the sternum is associated with scoliosis. Surgical or rehabilitation intervention for scoliosis should focus on all components involved in the pathogenesis of curvature to obtain better outcome.

SELECTION OF CITATIONS
SEARCH DETAIL
...