Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
Anal Chem ; 96(2): 652-660, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38148033

ABSTRACT

A novel method for the determination of trace arsenic (As) by photochemical vapor generation (PVG) with inductively coupled plasma mass spectrometry measurement was developed in this study. The synergistic effect from antimony (Sb) and cadmium (Cd) was found for the photochemical reduction of As for the first time. Effective photochemical reduction of As was obtained in the system containing 10% (v/v) acetic acid, 5.0 mg L-1 Sb(III), and 20.0 mg L-1 Cd(II) with 100 s UV irradiation. Analytical sensitivity of As(III) was comparable with that of As(V) under the tested conditions, making direct determination of total As feasible. Compared to the pneumatic nebulization method, analytical sensitivity of the developed method was enhanced about 50 folds. The PVG efficiency was estimated up to be 99 ± 3%. The limit of detection (LOD) (3σ) was found to be 2.1 ng L-1 for As, which was improved about 30-fold compared to that using direct sample introduction solution nebulization. Considering the sample dilution prior to analysis (usually one-fold), the LOD was actually enhanced about 15 folds. The relative standard deviations of seven replicate measurements of 1.0 µg L-1 As(III) and As (V) standard solutions were 2.3 and 2.9% for As(III) and As(V), respectively. The proposed method was successfully applied for the detection of As in certified reference materials of sediments (GBW07303a and GBW07305a), as well as three water samples. The mechanism of the PVG system was investigated by using gas chromatography mass spectrometry, electron paramagnetic resonance, and X-ray photoelectron spectroscopy. (CH3)3As along with (CH3)3Sb were synthesized under UV irradiation. Besides, volatile species of Cd were also found. The result obtained in this study is useful for developing efficient "sensitizers" in PVG and understanding the transformation of As in the presence of hydride/cold vapor forming elements in the photochemical process.

3.
Anal Chim Acta ; 1278: 341746, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37709475

ABSTRACT

BACKGROUND: Inductively coupled plasma-mass spectrometry (ICP-MS) is one of the most powerful instrumental techniques for the determination of tungsten for its low detection limit and wide linear range, while it remains challenging since the analytical performance can be affected by complicated sample matrix. Chemical vapor generation (CVG) harbors the potential to be an alternative to conventional solution nebulization for sample introduction to reduce matrix effect. However, the CVG of tungsten was low in efficiency. It is clear that green and homogeneous enhancement for CVG of tungsten is desired and the mechanism is worth in-depth investigation. RESULTS: Two green and homogeneous enhancement systems for CVG of tungsten were studied, including photochemical vapor generation (PVG) and hydride generation (HG) with sensitizers, Fe3+ and DDTC, respectively. Under optimal conditions, the limits of detection (LODs) were 0.02 µg L-1 for the PVG and 0.003 µg L-1 for the HG, respectively. For PVG, the Fe3+/Fe2+ cycling, free radical species, gaseous product, and the chemical speciation evolution of W in the PVG process were studied in detail. Photo-Fenton effect, generated reductive radical ·CO2-, gaseous product Fe(CO)5, and the mixed valence of W5+/W6+ in the PVG process were found to be crucial for the enhancement. As for HG, the complexation between W(VI) and DDTC might be conducive to the enhanced HG efficiency. SIGNIFICANCE: This work not only in-depth expands the element scope of CVG, but also investigates the enhancement mechanisms experimentally, which might render a deep insight into the CVG processes and foreshadow new guidelines for screening green and efficient homogeneous sensitizers for CVGs of more elements in the future.

4.
Anal Chem ; 95(28): 10498-10503, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37403837

ABSTRACT

This Technical Note reports a new UV photochemical hydride generation (PHG) of As(III/V) in a sulfite medium. Combining PHG for sample introduction with sector field inductively coupled plasma mass spectrometry (SF-ICPMS) for detection, we established a novel and ultrasensitive approach for the determination of total inorganic As. Arsine was generated simply by exposing arsenic solutions containing 2 mM of sodium sulfite to UV irradiation for 10 s with 1 mM of sodium formate for sensitivity enhancement. An impressive limit of detection of 0.2 ng/L for As, suitable for the quantitation of inorganic arsenic at ultratrace levels, was readily achieved. Formation of hydrated electrons and hydrogen radicals was experimentally validated, and this may be responsible for the reduction of the high-valent arsenic species. The PHG may also provide a new and useful alternative to conventional hydride generation and photochemical vapor generation for the determination of other trace elements, such as Se(VI) and Te(VI), and by other atomic spectrometric techniques.

5.
Chem Sci ; 14(10): 2698-2705, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36908964

ABSTRACT

Asymmetric diradical molecular systems with different resonance mechanisms are largely unexplored. Herein, two conjugated asymmetric diradicals with Blatter and phenoxyl moieties (pBP and mBP) have been synthesized and studied in depth. A complete set of spectroscopic, X-ray crystallographic and magnetic techniques, together with quantum chemical calculations, have been used. The para-isomer (pBP) bears diradical and zwitterionic resonant forms, the latter by a electron delocalization mechanism, which are synergistically integrated by a sequence of nitrogen, provided by the Blatter moiety imine and amine (of different acceptor nature). In the meta-isomer (mBP), the zwitterionic form promoted in pBP by the lone-pair electron of the amine nitrogen is not available, yet it possesses a pseudo-hyperconjugation effect where the N lone pair mediates in a bonding coupling in a counter homolytic bond scission mechanism. Both electronic effects converge to promote medium diradical characters and narrow singlet-triplet gaps to the two electronic isomers. All these aspects delineate the subtle balance that shapes the electronic structure of open-shell molecules, which is even more challenging in the case of asymmetric systems, such as those described here with asymmetric phenoxyl-Blatter diradicals.

6.
Anal Chem ; 94(44): 15176-15182, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36301518

ABSTRACT

This technical note reports for the first time the simultaneous vapor generation of 16 rare-earth elements (REEs) via reaction with sodium tetrahydroborate (THB). Significant improvement in REE vapor generation efficiency was discovered in the presence of arsenazo III (ARS). Subsequent to a critical evaluation on the impacts of various experimental variables, including the concentrations of acids, THB, and ARS, blank-limited (reagent contamination and impurity from ARS) detection limits (LODs) in the range of 0.004-0.15 µg L-1 were achieved based on three times the standard deviation of the method blank by the proposed vapor generation inductively coupled plasma mass spectrometry (ICP-MS). The nature of released REE species was studied by various approaches and identified to be REE nanoparticles and REE-ARS chelates; a dual-route mechanism for the vapor generation of REEs was thereby proposed.


Subject(s)
Metals, Rare Earth , Nanoparticles , Arsenazo III , Gases
7.
Anal Chem ; 94(11): 4770-4778, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35274934

ABSTRACT

Photochemical vapor generation (PVG) is emerging as an alternative sample introduction method in the field of atomic spectrometry. The addition of transition metals can largely improve the PVG yields of elements with the enhancement of 1.4 to 30 000-fold, based on previous reports. In this work, the use of vanadium species as novel "sensitizers" in PVG was first reported, tellurium (Te) was selected as the target. The efficient photochemical reduction of Te was observed in the presence of 9% (v/v) formic acid (FA), 20%(v/v) acetic acid (AA), and 40 mg L-1 of V(V) (existing as VO3-) with the conversion efficiency of 87 ± 3%. Under the selected conditions, there was no significant difference in analytical sensitivity between Te(IV) and Te(VI), making the direct detection of total Te possible. The limit of detection (LOD, 3σ) was 2.9 ng L-1 for Te with inductively coupled plasma mass spectrometry (ICP MS) measurement. Good precisions of 2.3% and 2.2% (relative standard deviations, RSD) for seven times replicate measurement of 0.5 µg L-1 Te(IV) and Te(VI) standard solutions were obtained. The sensitivity was enhanced about 55-fold compared to that using traditional direct solution nebulization. The method was applied for the determination of trace Te in three water samples and two certified reference materials of sediment with satisfactory results. The possible mechanism was investigated. The generation of volatile vanadium along with (CH3)2Te was found in PVG for the first time. The new findings in this work will be helpful for exploration of efficient "sensitizers" in PVG and further expanding the scope of elements amenable to PVG as well.


Subject(s)
Tellurium , Vanadium , Gases , Mass Spectrometry/methods , Spectrum Analysis
8.
Anal Chem ; 94(2): 593-599, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34931811

ABSTRACT

Efficient simultaneous photochemical vapor generation (PVG) of ruthenium (Ru) and osmium (Os) in the medium of formic acid was demonstrated. A flow-through photoreactor hyphenated to an inductively coupled plasma-mass spectrometer (ICP-MS) was used for the PVG and subsequent detection of the two elements. A similar synergistic enhancement from cobalt and cadmium ions on the PVG efficiency of both Ru and Os was discovered. Following the critical evaluation of the impacts of various transition metal ions, the concentrations of formic acid, cobalt, and cadmium ions, the flow rate of carrier gas, and the UV irradiation time, impressive limits of detection (LODs) of 5 and 0.5 ng L-1 were achieved for Ru and Os, respectively. The accuracy of the proposed PVG-ICP-MS method was validated by the analysis of several water samples with desirable spike recoveries obtained. Furthermore, the volatile compounds of Ru were directed and cryogenically trapped in acetonitrile and generation of carbonyls of Ru was verified by high-resolution electrospray ionization-mass spectra (ESI-MS).


Subject(s)
Osmium , Ruthenium , Cobalt , Gases/analysis , Spectrometry, Mass, Electrospray Ionization/methods
9.
Nat Commun ; 12(1): 6262, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34716307

ABSTRACT

π-conjugated radicals have great promise for use in organic spintronics, however, the mechanisms of spin relaxation and mobility related to radical structural flexibility remain unexplored. Here, we describe a dumbbell shape azobenzene diradical and correlate its solid-state flexibility with spin relaxation and mobility. We employ a combination of X-ray diffraction and Raman spectroscopy to determine the molecular changes with temperature. Heating leads to: i) a modulation of the spin distribution; and ii) a "normal" quinoidal → aromatic transformation at low temperatures driven by the intramolecular rotational vibrations of the azobenzene core and a "reversed" aromatic → quinoidal change at high temperatures activated by an azobenzene bicycle pedal motion amplified by anisotropic intermolecular interactions. Thermal excitation of these vibrational states modulates the diradical electronic and spin structures featuring vibronic coupling mechanisms that might be relevant for future design of high spin organic molecules with tunable magnetic properties for solid state spintronics.

10.
Chem Commun (Camb) ; 57(68): 8433-8436, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34338698

ABSTRACT

Herein, an asymmetric N-doped phenalenyl (BTAP) compound has been synthesized and carefully studied for the first time. The synthesis of BTAP reveals a planar configuration and an unexpected zwitterionic ground state with the negative charge delocalized around the circumjacent part and the positive charge mainly localized on the center.

11.
Anal Chem ; 93(32): 11151-11158, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34346211

ABSTRACT

Herein, we report a discovery that photochemical vapor generation (PCVG) of halides (bromide, chloride, and fluoride) can be realized in organic-acid-free media, with figures of merit comparable to those in classical scenarios employing acetic acid. Metal acetates, copper salts, and mixtures of different acetates and copper salts were evaluated for their performance in facilitating PCVG of halides; the formation of copper acetate complexes turned out to play a crucial role. Methyl halides (CH3X, X = Br, Cl, F) were identified by gas chromatography-mass spectrometry (GC-MS) as principal volatile compounds. Several important intermediate species, including cuprous ions (Cu+), methyl (•CH3), and hydroxyl (•OH) free radicals, were confirmed using cuproine, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), and coumarin as a chromogenic agent, radical tracer, and fluorescence probe based on UV-vis, GC-MS, and fluorescence spectroscopy, respectively. The ligand to metal charge transfer (LMCT) between acetate and copper and the charge transfer to solvent (CTTS) excitation of halides were considered to account for the generation of methyl halides in organic-acid-free media. The presence of 100 and 200 µg mL-1 of CuAc2, as well as sample delivery rates of 10.7 and 3.3 mL min-1, yielded limits of detection of 0.03 and 3 µg L-1 for Br- and Cl-, respectively, by inductively coupled plasma mass spectrometry (ICPMS). The method was applied to the analysis of bottled water and seawater, achieving spike recoveries between 92 and 101%.


Subject(s)
Hydroxyl Radical , Seawater , Organic Chemicals , Water
12.
Anal Chim Acta ; 1172: 338683, 2021 Aug 08.
Article in English | MEDLINE | ID: mdl-34119015

ABSTRACT

Total organic carbon (TOC) is an important parameter describing organic pollution degree of waters. Due to the increasing need of field analysis and drawbacks of conventional TOC analytical instruments, miniaturized TOC analyzers are still demanding. In this work, a dielectric barrier discharge (DBD) microplasma was utilized for catalytic oxidation vapor generation (COVG) of organic compounds into CO2, and a point discharge (PD) microplasma was employed to excite the carbon atomic emission spectra for quantification. Sample solution with phosphoric acid and persulfate solution was injected into the DBD-COVG reactor by a syringe to convert organic compounds into CO2 efficiently and quickly, which was subsequently transported into the point discharge optical emission spectrometer (PD-OES) for detecting carbon at 193.09 nm. Under optimal experimental conditions, high oxidation efficiencies for several organic compounds were achieved, i.e., 96.4%, 95.1% and 94.3% for 50 mg L-1 potassium hydrogen phthalate (KHP), sodium laurylsulfonate and phenol, respectively. A limit of detection (LOD) of 0.02 mg L-1 (as C) was obtained, with a precision of 3.9% (relative standard deviation, RSD) at 15 mg L-1 TOC standard (as C). The possible catalytic oxidation mechanism was proposed with the characteristic results of electron paramagnetic resonance (EPR). Its potential environmental application was demonstrated by successfully analyzing TOC in underground water, surface river water and surface sedimentary water samples from oil fields, with analytical results agreed well with those obtained by the commercial high-temperature combustion coupled nondispersive infrared absorption (HTC-NDIR) technique.

13.
Luminescence ; 36(6): 1525-1530, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34048637

ABSTRACT

A simple method was developed in this work for facile and visual detection of S2- using a paper-based fluorescence (FL) sensor coated with CdTe quantum dots (QDs) by headspace sampling. With the addition of hydrochloric acid, the target S2- in the liquid phase would transform to H2 S, which was released to headspace and quenched the FL of CdTe QDs in a linear manner through a gas-solid reaction, with any possible liquid-phase interference avoided. The regular quenching caused by S2- in analyte solution with increased concentration could be easily observed by the naked eye, and the limit of detection (LOD) for this method was 0.13 µM and 0.93 µM for FL and visual sensing, respectively, comparable or not to that by other sensing probes. A relative standard deviation of 1.2% was accomplished from seven replicated measurements, implying the high reproducibility, and the recovery for the spiked water samples ranging from 94 to 103%, and illustrating the satisfactory reliability of this method. Moreover, the preparation of this paper sensor was facile and did not require any complicated or time-consuming procedures for additional modification or functionalization as for other probes previously reported.


Subject(s)
Cadmium Compounds , Quantum Dots , Fluorescence , Limit of Detection , Reproducibility of Results , Spectrometry, Fluorescence , Tellurium
14.
Angew Chem Int Ed Engl ; 60(18): 9984-9989, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33594781

ABSTRACT

Low temperature and atmospheric pressure plasma-induced polymerization was demonstrated as a fast and facile strategy for tailoring of packing phase of COF-1 as well as preparing diverse covalent organic frameworks (COFs) including both two-dimensional (2D) COFs and three-dimensional (3D) COFs. By regulating the solvents, the fast construction of well-ordered AB staggered COF-1 and AA eclipsed COF-1 was facilely realized in minutes. The plasma approach presented here led to the rapid preparation of eight classical 2D COFs, including boronate ester-linkage (COF-5, COF-8 and COF-10), azine-linkage (NUS-2), ß-ketoenamine-linkage (TpPa, TPBD), imine-linkage (ILCOF-1, Py-COF), and 3D-COF-102 (boroxine linkage) in less than 1 hour. Different from conventional methods, the proposed methodology required much less time, lower power, no extra heating, inert-gas protection and pressure. The fast nucleation and growth of COFs with good crystallinity, morphology and thermal stability can be achieved under mild conditions.

15.
Anal Chem ; 93(7): 3343-3352, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33566589

ABSTRACT

Interfacial effect has attracted increasing interest as the inherent asymmetric environment of a gas-liquid interface leads to different chemical and physical properties between this region and the bulk phase, resulting in enhanced chemical processes, specific reactions, and mass transfer at the interface. Photochemical vapor generation (PVG) is regarded as a simple and green sample introduction method in atomic spectrometry. However, the photochemical behavior of elements with the interface is not known. Herein, we report the PVG of elements at the gas-liquid interface along with a possible mechanism investigated for the first time. Enhancement and/or suppression effects from the gas-liquid interface were observed on the PVG of 17 elements, which was correlated with the properties of analytes and the generated intermediate substances/products of PVG and the applied conditions. Enhancement from 1.1- to 7.3-fold in analytical sensitivity was found for 12 elements in the system with gas-liquid interface(s) compared to the results obtained in previous reports of PVG using traditional flow injection with inductively coupled plasma mass spectrometry measurement. The introduction of gas-liquid interface(s) and the resultant elevated temperature inside the PVG reactor likely facilitated the generation of radicals, the subsequent radical-based reactions, and the separation/transport/detection of volatile species of elements. In contrast, intermediate substances/products generated in PVG with poor thermostability will readily decompose at elevated temperatures, leading to a decreased signal response of analytes. The finding is helpful to understand the transport of elements under UV irradiation in the environment and has potential for analysis of trace elements in environmental and biological samples.

16.
Chem Commun (Camb) ; 56(38): 5143-5146, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32255106

ABSTRACT

We report two carbazole-based diradicals, out of which the m-isomer shows a large diradical character y0 (0.89) and a small singlet-triplet energy gap ΔES-T (-0.98 kcal mol-1), whereas the p-isomer exhibits smaller y0 (0.79) but a much larger ΔES-T (-6.16 kcal mol-1). DFT calculations reveal that this tendency is also suitable for nitrogen and carbon-centered diradicals.

17.
Nanoscale ; 12(9): 5543-5553, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32091517

ABSTRACT

Photosensitization is a promising avenue of oxygen activation, which can overcome the spin selection rule to transform the ground state oxygen (3O2) into a highly reactive singlet oxygen (1O2). Carbon dots (CDs) are a promising type of carbon-based photosensitizer, and nitrogen doping can further improve the oxygen photosensitization performance. Although the roles of nitrogen doping in tuning the optical properties (mainly absorption and fluorescence) of CDs have been well-studied, their association with oxygen photosensitization has not been reported. Herein, using the well-developed synthetic protocol of hydrothermal treatment of citric acid and ethylenediamine, we prepared nitrogen-doped CDs (N-CDs) of varied nitrogen contents. The oxygen photosensitization performances of the N-CDs were first confirmed by ROS investigation with TMB oxidation as the ROS probe and EPR. After XPS analysis of the surface nitrogen doping speciation, it was found that the changes of graphitic N and pyrrolic N correlated well with the oxygen photosensitization performances of N-CDs. Further theoretical calculations indicated that the two key factors for oxygen photosensitization, namely triplet activation and oxygen adsorption, are mainly associated with graphitic N and pyrrolic N, respectively. The results in this work help further understanding of the oxygen photosensitization mechanism of N-CDs, and are expected to be useful in the future design of carbon-based photosensitizers.

18.
Chem Commun (Camb) ; 56(9): 1405-1408, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31912829

ABSTRACT

Heteroatoms were introduced as a novel modification strategy for fine-tuning the diradical character of molecular systems. Both the diradical character and the singlet-triplet energy gaps of diketopyrrolopyrrole based phenoxyl diradicaloids decreased as the size of the substituted heteroatoms (from O, S to Se atom) increased.

19.
RSC Adv ; 10(73): 45171-45179, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-35516252

ABSTRACT

Due to the film-forming ability of polymers, a variety of photocatalytic membranes (PMs) based on polymers easily being separated and reused have been constructed for wastewater contaminant treatment. During their construction processes, chitosan (CS) as a bio-polymer with its distinct merits of abundant resources, low-cost and environmental-friendliness, as well as formability and ease of modification, has attracted great attention. However, the role of CS was mostly believed to be just a support or an adsorbent for fixing or dispersing photocatalysts. Whether CS possessed photocatalytic activity or not still remained vague. Herein, in this work, CS membranes (CSM) were facilely prepared for photocatalytic degradation of tetracycline hydrochloride (TC, a model organic pollutant) in aqueous solution, and its photocatalytic performance was investigated and compared with that of CSP (CS powder) and TiO2-P25 (a commercially used photocatalyst). The results showed that the single-phased CSM exhibited a better visible light photocatalytic activity. After visible light irradiation for 60 minutes, the degradation efficiency of TC can reach above 90% when the CSM was used as a photocatalyst, while with the same irradiation time interval, less TC could be degraded over both CSP and TiO2-P25. Through radical scavenging and EPR experiments, ˙O2 - and h+ were found to be the main active oxygen species generated in the reaction system for TC degradation. After being washed with 2 wt% NaOH solution, the CSM revealed a good recyclability implying its potential for practical applications. This study would provide a certain theoretical and data basis for the future development of CS-based PMs and photocatalysts.

20.
Chem Commun (Camb) ; 55(93): 13959-13962, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31633139

ABSTRACT

The recently developed UiO-66(Ce) was firstly endowed with greatly improved redox photocatalytic activity based on titanium incorporation, which for the first time induced the formation of oxygen vacancies in Ce-MOFs, and then promoted the generation of oxidative ˙OH/˙O2- and reductive electrons.

SELECTION OF CITATIONS
SEARCH DETAIL
...