Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 20(1): e1011366, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190406

ABSTRACT

C. elegans is a free-living nematode that is widely used as a small animal model for studying fundamental biological processes and disease mechanisms. Since the discovery of the Orsay virus in 2011, C. elegans also holds the promise of dissecting virus-host interaction networks and innate antiviral immunity pathways in an intact animal. Orsay virus primarily targets the worm intestine, causing enlarged intestinal lumen as well as visible changes to infected cells such as liquefaction of cytoplasm and convoluted apical border. Previous studies of Orsay virus identified that C. elegans is able to mount antiviral responses by DRH-1/RIG-I mediated RNA interference and Intracellular Pathogen Response, a uridylyltransferase that destabilizes viral RNAs by 3' end uridylation, and ubiquitin protein modifications and turnover. To comprehensively search for novel antiviral pathways in C. elegans, we performed genome-wide RNAi screens by bacterial feeding using existing bacterial RNAi libraries covering 94% of the entire genome. Out of the 106 potential antiviral gene hits identified, we investigated those in three new pathways: collagens, actin remodelers, and epigenetic regulators. By characterizing Orsay virus infection in RNAi and mutant worms, our results indicate that collagens likely form a physical barrier in intestine cells to inhibit viral infection by preventing Orsay virus entry. Furthermore, evidence suggests that actin remodeling proteins (unc-34, wve-1 and wsp-1) and chromatin remodelers (nurf-1 and isw-1) exert their antiviral activities by regulating the intestinal actin (act-5), a critical component of the terminal web which likely function as another physical barrier to prevent Orsay infection.


Subject(s)
Caenorhabditis elegans Proteins , Virus Diseases , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Actins/metabolism , RNA Interference , Virus Diseases/genetics , Collagen/genetics , Collagen/metabolism , Host-Pathogen Interactions , Nerve Tissue Proteins/metabolism
2.
Commun Biol ; 5(1): 643, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773333

ABSTRACT

Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis-Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens.


Subject(s)
Bacillus thuringiensis , Caenorhabditis elegans Proteins , AMP-Activated Protein Kinases/metabolism , Animals , Bacillus thuringiensis/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Immunity, Innate
3.
Appl Opt ; 61(2): 540-545, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35200895

ABSTRACT

A novel method called even-power phase modulation is proposed in a self-mixing displacement sensor to improve measuring accuracy, to the best of our knowledge, which is realized by combining the even-power fast algorithm with the sinusoidal phase-modulation method. By performing the even-power fast algorithm in the self-mixing interference system, the spectrum of harmonic components is broadened. In this case, the extracted first and second harmonic components in the frequency domain contain rich information, and the displacement of the target can be accurately reconstructed. The principle and signal processing approach are introduced in detail, and the simulation results show that the reconstruction error can be effectively reduced compared with the electro-optic modulator phase modulation method. A series of experiments at different vibration amplitudes is conducted to confirm the feasibility and effectiveness of the method. An amplitude of 120 nm is proved to be measurable, and the absolute error is 10 nm, which shows great potential in the field of non-contact nanometer vibration measurement sensors.

4.
Appl Opt ; 59(8): 2386-2392, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32225772

ABSTRACT

In this paper, the self-mixing interference subject to weak optical feedback has been used to measure the damping vibration. By analyzing the spectrum of the signal, the damping coefficient can be extracted precisely from the nth-order Bessel functions, which are determined by the dominant harmonic order of the frequency spectrum. Theoretical derivation and signal processing are presented. Four kinds of vibrating targets with different damping coefficients are measured. Experimental results show that standard deviation and root mean square error of data are less than 0.2 and 0.1, respectively, which means fitted values are stable as well as having a very high fitting precision.

5.
Commun Biol ; 2: 368, 2019.
Article in English | MEDLINE | ID: mdl-31633059

ABSTRACT

Microbes can enter into healthy plants as endophytes and confer beneficial functions. The entry of commensal microbes into plants involves penetrating plant defense. Most mechanisms about overcoming plant defense are focused on adapted pathogens, while the mechanism involved in beneficial endophyte evades plant defense to achieve harmonious commensalism is unclear. Here, we discover a mechanism that an endophyte bacterium Bacillus subtilis BSn5 reduce to stimulate the plant defensive response by producing lantibiotic subtilomycin to bind self-produced flagellin. Subtilomycin bind with flagellin and affect flg22-induced plant defense, by which means promotes the endophytic colonization in A. thaliana. Subtilomycin also promotes the BSn5 colonization in a distinct plant, Amorphophallus konjac, where the BSn5 was isolated. Our investigation shows more independent subtilomycin/-like producers are isolated from distinct plants. Our work unveils a common strategy that is used for bacterial endophytic colonization.


Subject(s)
Bacillus subtilis/metabolism , Bacteriocins/metabolism , Endophytes/metabolism , Flagellin/metabolism , Plant Immunity , Amorphophallus/metabolism , Amorphophallus/microbiology , Arabidopsis/metabolism , Arabidopsis/microbiology , Plant Immunity/physiology , Symbiosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...