Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Microbiol Spectr ; : e0407523, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980023

ABSTRACT

Understanding changes in the distribution patterns and diversity of soil microbial communities from the perspectives of age-related changes, seasonal variations, and the interaction between the two factors can facilitate the management of plantations. In Chinese fir plantations, we collected soils from different depths in over-mature forests, mature forests, near-mature forests, middle-aged forests, and young forests in summer, autumn, and winter in China's subtropical regions. As the forests developed, bacterial and fungal communities' diversity changed, reached a minimum value at near-mature forests, and then increased in mature forests or over-mature forests. Near-mature forests had the lowest topological properties. The Shannon index of microbial communities varied with seasonal changes (P < 0.05). Bacterial and fungal community composition at genus level was more closely related to temperature indicators (including daily average temperature, daily maximum temperature, and daily minimum temperature) (P < 0.01, 0.5554 < R2 <0.8185) than daily average precipitation (P > 0.05, 0.0321 < R2 <0.6773). Bacteria were clustered by season and fungi were clustered by forest age. We suggested that extending the tree cultivation time of plantations could promote microbial community recovery. In addition, we found some species worthy of attention, including Bacteroidetes in autumn in over-mature forests, and Firmicutes in summer in young forests.IMPORTANCEChinese fir [Cunninghamia lanceolata (Lamb.) Hook] is an important fast-growing species with the largest artificial forest area in China, with the outstanding problems of low quality in soil. Soil microorganisms play a crucial role in soil fertility by decomposing organic matter, optimizing soil structure, and releasing essential nutrients for plant growth. In order to maintain healthy soil quality and prevent nutrient depletion and land degradation, it is crucial to understand the changes of soil microbial composition and diversity. Our study determined to reveal the change of soil microbial community from stand age, season, and the interaction between the two aspects, which is helpful to understand how interannual changes in different years and seasonal changes in one year affect soil fertility restoration and sustainable forest plantation management. It is a meaningful exploration of soil microbial communities and provides new information for further research.

2.
Opt Lett ; 48(22): 6040-6043, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966784

ABSTRACT

In this Letter, an ultracompact silicon-based waveguide crossing for dual polarizations is proposed and experimentally demonstrated using subwavelength-hole-assisted multimode interference couplers. Thanks to the flexible and easy dispersion engineering in the introduced subwavelength-hole-assisted multimode interference couplers, the reduced and equal beat lengths for dual polarizations are accessible via careful parametric optimization, consequently enabling a substantially reduced device size. Experimental results indicate that the proposed crossing (13.6 × 13.6 µm2 in size) features a low insertion loss of 1.03 dB (0.76 dB) and low crosstalk of -32.5 dB (-37.8 dB) at a central wavelength of 1550 nm for TE (TM) mode, with a broad bandwidth of ∼80 nm for crosstalk of <-18 dB.

3.
Huan Jing Ke Xue ; 43(7): 3741-3751, 2022 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-35791557

ABSTRACT

The ecological risks such as water eutrophication caused by soil phosphorus loss have attracted extensive attention, and its dynamic changes and enrichment effects are the basis for formulating reasonable control measures. In this study, based on the paddy soils of 1.8×106 hm2 in Fujian province, the dynamic changes and ecological risks of available phosphorus in paddy soils over the past 40 years were analyzedusing a soil database of 1:50000. The soil database contained 1471, 215534, and 2895 paddy soil samples in different periods, respectively. The paddy soil samples were derived from the 1982 Second National Soil Census, the 2008 Ministry of Agriculture and Rural Areas Soil Testing and Formulated Fertilization Project and the 2018 Ministry of Agriculture, and the Rural Areas Arable Land Quality Monitoring Project, respectively. The results showed that from 1982 to 2018, the content of available phosphorus in paddy soils increased by 47 mg·kg-1, and the enriched area reached 1.65×106 hm2, accounting for 91% of the total paddy soils in Fujian province. From 1982 to 2008, the available phosphorus content of paddy soils in Fujian province increased by 28 mg·kg-1, with the enriched area reaching 1.47×106 hm2, accounting for 82% of the total paddy soils in Fujian province. From 2008 to 2018, the available phosphorus content of paddy soils in Fujian province increased by 19 mg·kg-1, with the enriched area reaching 1.22×106 hm2, accounting for 69% of the total paddy soils in Fujian province. Further ecological risk assessment showed that from 2008 to 2018, the area of paddy soil with ecological phosphorus enrichment risk in the province gradually increased, mainly distributed in percogenic paddy soils and hydromorphic paddy soils with a slope of less than 2°. In the future, effective phosphorus fertilizer management measures should be formulated for different types of paddy soil to prevent the occurrence of environmental problems such as water eutrophication.


Subject(s)
Oryza , Soil , Phosphorus , Risk Assessment , Water
4.
Food Sci Nutr ; 9(11): 6069-6077, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34760238

ABSTRACT

Rosemary (Rosmarinus officinales L. (Labiatae)) is one of the major economic crops in the world, and rosemary essential oil (REO) is one of the top products derived from rosemary and has excellent commercial prospects. Many factors affect the yield of REO extracted by hydrodistillation (HY). This study was proposed to identify and analyze these factors to maximize the yield of essential oils and reduce the cost. First, two different single-factor extraction experiments were conducted, (1) adding NaCl and (2) using various organs of the plant, to determine the influence of each factor on the oil yield. Based on single-factor experiments, the orthogonal experiments (L9, 33) were designed to determine the optimal conditions for the extraction of rosemary oil. Meanwhile, the kinetic extraction analysis of the test data was carried out. The results revealed that the highest oil yield was achieved when rosemary leaves were crushed to 2 cm, the ratio of water to the material was 1:3, and NaCl concentration was 5%. A simple first-order kinetic model has also proved to be an acceptable general choice and allows to predict the output of extraction operations overtime accurately and robustly in practice. This study provides a reference scheme for using hydrodistillation to extract rosemary essential oil.

5.
Physiol Mol Biol Plants ; 27(4): 675-686, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33958839

ABSTRACT

Potentially toxic elements (PTEs) pollution has become a serious environmental threat, particularly in developing countries such as China. In response, there is a growing interest in phytoremediation studies to identify plant species as designated hyperaccumulators of PTEs in polluted soils. Poinsettia was selected as a candidate species for phytoremediation of six PTEs (Zn, Pb, Hg, Cr, As, Cu) in this study. A pot cultivation experiment (randomized incomplete block experimental design with 5 treatments and 4 blocks) was conducted using contaminated soils gathered from an industrial area in southcentral China. The bioaccumulation factor (BAF), translocation factor (TF), and bioconcentration factor were analyzed to determine the phytoremediation potential of poinsettia potted in different ratios of polluted soils. One-way ANOVA with post-hoc Tukey's test showed that poinsettia had significant uptake of Zn, Pb, Cu (BAF < 1 and TF < 1, p < 0.05) and Hg (BAF < 1 and TF > 1, p < 0.05). Poinsettias can therefore effectively accumulate Zn, Pb, and Cu in their lateral roots while extracting and transferring Hg into their leaves. Moreover, poinsettia exhibited tolerance towards As and Cr. Interestingly, it was also observed that PTEs can inhibit the height of potted poinsettia at a certain concentration.

6.
Opt Express ; 24(9): 10142-56, 2016 May 02.
Article in English | MEDLINE | ID: mdl-27137623

ABSTRACT

Leaf area index (LAI) is a key parameter for the study of biogeochemical cycles in ecosystems. Remote sensing techniques have been widely used to estimate LAIs in a wide range of vegetation types. However, limited by the sensor detection capability, considerable fewer studies investigated the layered estimation of LAIs in the vertical direction, which can significantly affect the precision evaluation of vegetation biophysical and biochemical processes. This study tried to generate a kind of pseudo large footprint waveform from the small footprint full-waveform airborne LiDAR data by an aggregation approach. The layered distribution of canopy heights and LAIs were successfully retrieved based on the large footprint waveform data in an agricultural landscape of orchards with typical multi-layer vegetation covers. The Gaussian fitting was conducted on the normalized large footprint waveforms to identify the vertical positions for different vegetation layers. Then, the gap theory was applied to retrieve the layered LAIs. Statistically significant simple linear regression models were fitted between the LiDAR-retrieved and field-observed values for the canopy heights and LAIs in different layers. Satisfactory results were obtained with a root mean square error of 0.36 m for the overstorey canopy height (R2 = 0.82), 0.29 m for the understory canopy height (R2 = 0.76), 0.28 for overstorey LAI (R2 = 0.75), 0.40 for understory LAI (R2 = 0.64), and 0.38 for total LAI (R2 = 0.69), respectively. To conclude, estimating the layered LAIs in the multi-layer agriculture orchards from the pseudo large footprint waveforms is feasible and the estimation errors are acceptable, which will provide some new ideas and methods for the quantitative remote sensing with vegetation.


Subject(s)
Agriculture , Plant Leaves , Remote Sensing Technology , Trees , Ecosystem , Environmental Monitoring/methods , Normal Distribution
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(11): 3083-8, 2012 Nov.
Article in Chinese | MEDLINE | ID: mdl-23387184

ABSTRACT

The refractive index of sea ice in the polar region is an important geophysical parameter. It is needed as a vital input for some numerical climate models and is helpful to classifying sea ice types. In the present study, according to Hong Approximation (HA), we retrieved the arctic sea ice refractive index at 6.9, 10.7, 23, 37, and 89 GHz in different arctic climatological conditions. The refractive indices of wintertime first year (FY) sea ice and summertime ice were derived with average values of 1.78 - 1.75 and 1.724 - 1.70 at different frequencies respectively, which are consistent with previous studies. However, for multiyear (MY) ice, the results indicated relatively large bias between modeled results since 10.7 GHz. At a higher frequency, there is larger MY ice refractive index difference. This bias is mainly attributed to the volume scattering effect on MY microwave radiation due to emergence of massive small empty cavities after the brine water in MY ice is discharged into sea. In addition, the retrieved sea ice refractive indices can be utilized to classify ice types (for example, the winter derivation at 89 GHz), to identify coastal polynyas (winter retrieval at 6.9 GHz), and to outline the areal extent of significantly melting marginal sea ice zone (MIZ) (summer result at 6.9 GHz). The investigation of this study suggests an effective tool of passive microwave remote sensing in monitoring sea ice refractive index variability.

SELECTION OF CITATIONS
SEARCH DETAIL
...