Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.851
Filter
1.
J Invest Dermatol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823435

ABSTRACT

TRPV3 is a temperature-sensitive calcium-permeable channel. In previous studies, we noticed prominent TUNEL-positive keratinocytes in patients with Olmsted syndrome and Trpv3+/G568V mice, both of which carry gain-of-function mutations in the TRPV3 gene. However, it remains unclear how the keratinocytes die and whether this process contributes to more skin disorders. Herein, we showed that gain-of-function mutation or pharmacological activation of TRPV3 resulted in PARP1/AIFM1/MIF axis-mediated parthanatos, which is an underestimated form of cell death in skin diseases. Chelating calcium, scavenging reactive oxygen species or inhibiting nitric oxide synthase effectively rescued the parthanatos, indicating that TRPV3 regulates parthanatos through calcium-mediated oxidative stress. Furthermore, inhibiting PARP1 downregulated TSLP and IL33 induced by TRPV3 activation in HaCaT cells, reduced immune cell infiltration, and ameliorated epidermal thickening in Trpv3+/G568V mice. Marked parthanatos was also detected in the skin of MC903-treated mice and patients with atopic dermatitis (AD), while inhibiting PARP1 largely alleviated the MC903-induced dermatitis. Additionally, stimulating parthanatos in mouse skin with methylnitronitrosoguanidine recapitulated many features of AD. These data demonstrate that the TRPV3-regulated parthanatos-associated PARP1/AIFM1/MIF axis is a critical contributor to the pathogenesis of Olmsted syndrome and AD, suggesting that modulating the PARP1/AIFM1/MIF axis is a promising therapy for these conditions.

2.
Endocrine ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824220

ABSTRACT

Male cases diagnosed COVID-19 with more complications and higher mortality compared with females, and the overall consequences of male sex hormones and semen parameters deterioration were observed in COVID-19 patients, whereas the involvement and mechanism for spermatogenic cell remains unclear. The study was aimed to investigate the infection mode of S protein (D614G) pseudovirus (pseu-S-D614G) to spermatogenic cells, as well as the influence on cell growth. Both mouse spermatogonia (GC-1 cell, immortalized spermatogonia) and spermatocyte (GC-2 cell, immortalized spermatocytes) were used to detect the infection of pseu-S-D614G of SARS-CoV-2, and further explored the effect of SARS-CoV-2-spike protein (S-protein) and SARS-CoV-2-spike protein (omicron) (O-protein) on GC-1 cell apoptosis and proliferation. The data showed that the pseu-S-D614G invaded into GC-1 cells through either human ACE2 (hACE2) or human CD147 (hCD147), whereas GC-2 cells were insensitive to viral infection. In addition, the apoptosis and proliferation suppression inflicted by S-protein and O-protein on GC-1 cells was through Bax-Caspase3 signaling rather than arresting cell cycle progression. These findings suggest that CD147, apart from ACE2, may be a potential receptor for SARS-CoV-2 infection in testicular tissues, and that the apoptotic effect was induced in spermatogonia cells by S-protein or O-protein, eventually resulted in the damage to male fertility.

3.
BMC Womens Health ; 24(1): 316, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824532

ABSTRACT

INTRODUCTION: Bacterial vaginitis (BV) is a common vaginal disease. Vitamin E has been shown to reduce BV by enhancing immune function, but no studies have analyzed the relationship between vitamin E and BV at different BMIs and ages. METHOD: This study used 2242 participants from four cycles of NHANES 1999-2006 in American. Participants' vitamin E levels were divided into four groups, and analyses such as study population description, stratified analysis, multiple logistic regression analysis, and curve fitting were performed. To perform data processing, the researchers used the statistical package R (The R Foundation; http://www.r-project.org ; version 3.6.3) and Empower Stats software ( www.empowerstats.net , X&Y solutions, Inc. Boston, Massachusetts). RESULT: The concentrations of serum vitamin E were negatively correlated with the risk of BV, especially when vitamin E were at 1198-5459ug/dL with (OR = -0.443, 95%CI = 0.447-0.923, P = 0.032) or without (OR = -0.521, 95%CI = 0.421-0.837, P = 0.006) adjustment for variables. At the same time, at lower levels, there was no significant association. Vitamin E supplementation may significantly reduce the risk of BV (p < 0.001). In addition, the risk of having BV decreased and then increased with increasing vitamin E concentrations at high BMI levels (p < 0.01). CONCLUSION: Vitamin E at moderate to high concentrations may significantly reduce BV risk, says the study, providing clinical evidence for the prevention and the treatment of BV.


Subject(s)
Vaginosis, Bacterial , Vitamin E , Humans , Female , Vitamin E/blood , Vitamin E/therapeutic use , Cross-Sectional Studies , Adult , Vaginosis, Bacterial/blood , Vaginosis, Bacterial/epidemiology , Middle Aged , Body Mass Index , Nutrition Surveys , Young Adult , United States/epidemiology , Risk Factors
4.
Heliyon ; 10(10): e31614, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831825

ABSTRACT

Addressing the critical need for accurate fall event detection due to their potentially severe impacts, this paper introduces the Spatial Channel and Pooling Enhanced You Only Look Once version 5 small (SCPE-YOLOv5s) model. Fall events pose a challenge for detection due to their varying scales and subtle pose features. To address this problem, SCPE-YOLOv5s introduces spatial attention to the Efficient Channel Attention (ECA) network, which significantly enhances the model's ability to extract features from spatial pose distribution. Moreover, the model integrates average pooling layers into the Spatial Pyramid Pooling (SPP) network to support the multi-scale extraction of fall poses. Meanwhile, by incorporating the ECA network into SPP, the model effectively combines global and local features to further enhance the feature extraction. This paper validates the SCPE-YOLOv5s on a public dataset, demonstrating that it achieves a mean Average Precision of 88.29 %, outperforming the You Only Look Once version 5 small by 4.87 %. Additionally, the model achieves 57.4 frames per second. Therefore, SCPE-YOLOv5s provides a novel solution for fall event detection.

5.
Heliyon ; 10(9): e29874, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694094

ABSTRACT

Ischemia‒reperfusion (I/R) injury is a frequently observed complication after flap surgery, and it affects skin flap survival and patient prognosis. Currently, there are no proven safe and effective treatment options to treat skin flap I/R injury. Herein, the potential efficacies of the bioactive peptide from maggots (BPM), as well as its underlying mechanisms, were explored in a rat model of skin flap I/R injury and LPS- or H2O2-elicited RAW 264.7 cells. We demonstrated that BPM significantly ameliorated the area of flap survival, and histological changes in skin tissue in vivo. Furthermore, BPM could markedly restore or enhance Nrf2 and HO-1 levels, and suppress the expression of pro-inflammatory cytokines, including TLR4, p-IκB, NFκB p65, p-p65, IL-6, and TNF-α in I/R-injured skin flaps. In addition, BPM treatment exhibited excellent biocompatibility with an adequate safety profile, while it exhibited superior ROS-scavenging ability and the upregulation of antioxidant enzymes in vitro. Mechanistically, the above benefits related to BPM involved the activation of Nrf2/HO-1 and suppression of TLR4/NF-κB pathway. Taken together, this study may provide a scientific basis for the potential therapeutic effect of BPM in the prevention of skin flap I/R injury and other related diseases.

6.
Article in English | MEDLINE | ID: mdl-38696289

ABSTRACT

Tensor networks developed in the context of condensed matter physics try to approximate order-N tensors with a reduced number of degrees of freedom that is only polynomial in N and arranged as a network of partially contracted smaller tensors. As we have recently demonstrated in the context of quantum many-body physics, computation costs can be further substantially reduced by imposing constraints on the canonical polyadic (CP) rank of the tensors in such networks. Here, we demonstrate how tree tensor networks (TTN) with CP rank constraints and tensor dropout can be used in machine learning. The approach is found to outperform other tensor-network-based methods in Fashion-MNIST image classification. A low-rank TTN classifier with branching ratio b = 4 reaches a test set accuracy of 90.3% with low computation costs. Consisting of mostly linear elements, tensor network classifiers avoid the vanishing gradient problem of deep neural networks. The CP rank constraints have additional advantages: The number of parameters can be decreased and tuned more freely to control overfitting, improve generalization properties, and reduce computation costs. They allow us to employ trees with large branching ratios, substantially improving the representation power.

7.
Article in English | MEDLINE | ID: mdl-38699881

ABSTRACT

PURPOSE: Spectacle lenses with peripheral lenslets have shown promise for myopia control by providing peripheral myopic defocus signals. Here, we aimed to investigate the impact of prolonged exposure (>6 months) to peripheral myopic defocus on visual information processing in myopic children. METHODS: The study included 30 myopic children who habitually wore spectacle lenses with highly aspherical lenslets (HAL group) and 34 children who habitually wore single-vision (SV group) spectacles. The quick contrast sensitivity function (qCSF) was used to measure contrast sensitivity (CS) under conditions of no or high noise. Both groups were tested with HAL and SV lenses. The perceptual template model was utilised to fit the contrast sensitivity function (CSF) and determine differences in information processing efficiency through internal additive noise ( N add $$ {N}_{\mathrm{add}} $$ ) and perceptual template gain (ß). RESULTS: The areas under the log CSF in the SV group were significantly higher than for the HAL group in both zero-noise conditions with the SV test lens (p = 0.03) and high-noise conditions with the HAL test lens (p = 0.02). For 2 cycle per degree (cpd) stimuli, ß was significantly higher in the SV group with the HAL test lens than in the HAL group (p = 0.02), while there was a trend towards a significant difference in ß for 6 cpd stimuli (p = 0.07). However, there were no significant differences in N add $$ {N}_{\mathrm{add}} $$ between the two groups, with or without noise interference. CONCLUSION: The reduced CS observed in myopic children wearing HAL lenses for 6 months or more may be due to decreased ß. This suggests that prolonged use of spectacle lenses with peripheral myopic defocus signals may compromise the central visual system's ability to process additional external noise, resulting in decreased efficiency in visual information processing.

8.
Cell Biol Toxicol ; 40(1): 25, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691184

ABSTRACT

Lung cancer is a common malignancy that is frequently associated with systemic metabolic disorders. Early detection is pivotal to survival improvement. Although blood biomarkers have been used in its early diagnosis, missed diagnosis and misdiagnosis still exist due to the heterogeneity of lung cancer. Integration of multiple biomarkers or trans-omics results can improve the accuracy and reliability for lung cancer diagnosis. As metabolic reprogramming is a hallmark of lung cancer, metabolites, specifically lipids might be useful for lung cancer detection, yet systematic characterizations of metabolites in lung cancer are still incipient. The present study profiled the polar metabolome and lipidome in the plasma of lung cancer patients to construct an inclusive metabolomic atlas of lung cancer. A comprehensive analysis of lung cancer was also conducted combining metabolomics with clinical phenotypes. Furthermore, the differences in plasma lipid metabolites were compared and analyzed among different lung cancer subtypes. Alcohols, amides, and peptide metabolites were significantly increased in lung cancer, while carboxylic acids, hydrocarbons, and fatty acids were remarkably decreased. Lipid profiling revealed a significant increase in plasma levels of CER, PE, SM, and TAG in individuals with lung cancer as compared to those in healthy controls. Correlation analysis confirmed the association between a panel of metabolites and TAGs. Clinical trans-omics studies elucidated the complex correlations between lipidomic data and clinical phenotypes. The present study emphasized the clinical importance of lipidomics in lung cancer, which involves the correlation between metabolites and the expressions of other omics, ultimately influencing clinical phenotypes. This novel trans-omics network approach would facilitate the development of precision therapy for lung cancer.


Subject(s)
Lung Neoplasms , Metabolomics , Precision Medicine , Humans , Lung Neoplasms/blood , Lung Neoplasms/metabolism , Metabolomics/methods , Precision Medicine/methods , Biomarkers, Tumor/blood , Male , Middle Aged , Female , Lipidomics/methods , Phenotype , Metabolome , Aged , Lipids/blood
9.
JHEP Rep ; 6(6): 101037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38721342

ABSTRACT

Background & Aims: Inflammatory bowel disease (IBD) is commonly associated with extraintestinal complications, including autoimmune liver disease. The co-occurrence of IBD and primary biliary cholangitis (PBC) has been increasingly observed, but the underlying relationship between these conditions remains unclear. Methods: Using summary statistics from genome-wide association studies (GWAS), we investigated the causal effects between PBC and IBD, including Crohn's disease (CD) and ulcerative colitis (UC). We also analyzed the shared genetic architecture between IBD and PBC using data from GWAS, bulk-tissue RNA sequencing, and single cell RNA sequencing, and explored potential functional genes. Result: There was a strong positive genetic correlation between PBC and IBD (linkage disequilibrium score regression: rg = 0.2249, p = 3.38 × 10-5). Cross-trait analysis yielded 10 shared-risk single nucleotide polymorphisms (SNPs), as well as nine novel SNPs, which were associated with both traits. Using Mendelian randomization, a stable causal effect was established of PBC on IBD. Genetically predicted PBC was found to have a risk effect on IBD (1.105; 95% CI: 1.058-1.15; p = 1.16 × 10-10), but not vice versa. Shared tissue-specific heritability enrichment was identified for PBC and IBD (including CD and UC) in lung, spleen, and whole-blood samples. Furthermore, shared enrichment was observed of specific cell types (T cells, B cells, and natural killer cells) and their subtypes. Nine functional genes were identified based on summary statistics-based Mendelian randomization. Conclusions: This study detected shared genetic architecture between IBD and PBC and demonstrated a stable causal relationship of genetically predicted PBC on the risk of IBD. These findings shed light on the biological basis of comorbidity between IBD and PBC, and have important implications for intervention and treatment targets of these two diseases simultaneously. Impact and Implications: The discovery of novel shared single nucleotide polymorphisms (SNPs) and functional genes provides insights into the common targets between inflammatory bowel disease (IBD) and primary biliary cholangitis (PBC), serving as a basis for new drug development and contributing to the study of disease pathogenesis. Additionally, the established significant causality and genetic correlation underscore the importance of clinical intervention in preventing the comorbidity of IBD and PBC. The enrichment of SNP heritability in specific tissues and cell types reveals the role of immune factors in the potential disease mechanisms shared between IBD and PBC. This stimulates further research on potential interventions and could lead to the development of new targets for immune-based therapies.

10.
Int J Ophthalmol ; 17(3): 537-544, 2024.
Article in English | MEDLINE | ID: mdl-38721498

ABSTRACT

AIM: To identify the differential methylation sites (DMS) and their according genes associated with diabetic retinopathy (DR) development in type 1 diabetes (T1DM) children. METHODS: This study consists of two surveys. A total of 40 T1DM children was included in the first survey. Because no participant has DR, retina thinning was used as a surrogate indicator for DR. The lowest 25% participants with the thinnest macular retinal thickness were included into the case group, and the others were controls. The DNA methylation status was assessed by the Illumina methylation 850K array BeadChip assay, and compared between the case and control groups. Four DMS with a potential role in diabetes were identified. The second survey included 27 T1DM children, among which four had DR. The methylation patterns of the four DMS identified by 850K were compared between participants with and without DR by pyrosequencing. RESULTS: In the first survey, the 850K array revealed 751 sites significantly and differentially methylated in the case group comparing with the controls (|Δß|>0.1 and Adj.P<0.05), and 328 of these were identified with a significance of Adj.P<0.01. Among these, 319 CpG sites were hypermethylated and 432 were hypomethylated in the case group relative to the controls. Pyrosequencing revealed that the transcription elongation regulator 1 like (TCERG1L, cg07684215) gene was hypermethylated in the four T1DM children with DR (P=0.018), which was consistent with the result from the first survey. The methylation status of the other three DMS (cg26389052, cg25192647, and cg05413694) showed no difference (all P>0.05) between participants with and without DR. CONCLUSION: The hypermethylation of the TCERG1L gene is a risk factor for DR development in Chinese children with T1DM.

11.
Biomed Environ Sci ; 37(4): 387-398, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727161

ABSTRACT

Objective: Recombinase-aided polymerase chain reaction (RAP) is a sensitive, single-tube, two-stage nucleic acid amplification method. This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA), and Acinetobacter baumannii (AB) in the bloodstream based on recombinant human mannan-binding lectin protein (M1 protein)-conjugated magnetic bead (M1 bead) enrichment of pathogens combined with RAP. Methods: Recombinant plasmids were used to evaluate the assay sensitivity. Common blood influenza bacteria were used for the specific detection. Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR (M-RAP) and quantitative PCR (qPCR) assays. Kappa analysis was used to evaluate the consistency between the two assays. Results: The M-RAP method had sensitivity rates of 1, 10, and 1 copies/µL for the detection of SA, PA, and AB plasmids, respectively, without cross-reaction to other bacterial species. The M-RAP assay obtained results for < 10 CFU/mL pathogens in the blood within 4 h, with higher sensitivity than qPCR. M-RAP and qPCR for SA, PA, and AB yielded Kappa values of 0.839, 0.815, and 0.856, respectively ( P < 0.05). Conclusion: An M-RAP assay for SA, PA, and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.


Subject(s)
Bacteremia , Mannose-Binding Lectin , Humans , Mannose-Binding Lectin/blood , Bacteremia/diagnosis , Bacteremia/microbiology , Bacteremia/blood , Recombinases/metabolism , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/genetics , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Bacteria/genetics , Bacteria/isolation & purification
12.
IEEE Trans Cybern ; PP2024 May 10.
Article in English | MEDLINE | ID: mdl-38728131

ABSTRACT

Radiation therapy treatment planning requires balancing the delivery of the target dose while sparing normal tissues, making it a complex process. To streamline the planning process and enhance its quality, there is a growing demand for knowledge-based planning (KBP). Ensemble learning has shown impressive power in various deep learning tasks, and it has great potential to improve the performance of KBP. However, the effectiveness of ensemble learning heavily depends on the diversity and individual accuracy of the base learners. Moreover, the complexity of model ensembles is a major concern, as it requires maintaining multiple models during inference, leading to increased computational cost and storage overhead. In this study, we propose a novel learning-based ensemble approach named LENAS, which integrates neural architecture search with knowledge distillation for 3-D radiotherapy dose prediction. Our approach starts by exhaustively searching each block from an enormous architecture space to identify multiple architectures that exhibit promising performance and significant diversity. To mitigate the complexity introduced by the model ensemble, we adopt the teacher-student paradigm, leveraging the diverse outputs from multiple learned networks as supervisory signals to guide the training of the student network. Furthermore, to preserve high-level semantic information, we design a hybrid loss to optimize the student network, enabling it to recover the knowledge embedded within the teacher networks. The proposed method has been evaluated on two public datasets: 1) OpenKBP and 2) AIMIS. Extensive experimental results demonstrate the effectiveness of our method and its superior performance to the state-of-the-art methods. Code: github.com/hust-linyi/LENAS.

13.
Sci Rep ; 14(1): 10540, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719945

ABSTRACT

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Subject(s)
Bacteriophages , Bivalvia , Gills , Metagenomics , Animals , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Gills/microbiology , Gills/virology , Gills/metabolism , Bivalvia/microbiology , Bivalvia/virology , Bivalvia/genetics , Gene Expression Profiling , Transcriptome , Virome/genetics , Bacteria/genetics , Bacteria/classification , Symbiosis/genetics , Metagenome
14.
BMC Public Health ; 24(1): 1267, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720267

ABSTRACT

OBJECTIVE: Bayesian network (BN) models were developed to explore the specific relationships between influencing factors and type 2 diabetes mellitus (T2DM), coronary heart disease (CAD), and their comorbidities. The aim was to predict disease occurrence and diagnose etiology using these models, thereby informing the development of effective prevention and control strategies for T2DM, CAD, and their comorbidities. METHOD: Employing a case-control design, the study compared individuals with T2DM, CAD, and their comorbidities (case group) with healthy counterparts (control group). Univariate and multivariate Logistic regression analyses were conducted to identify disease-influencing factors. The BN structure was learned using the Tabu search algorithm, with parameter estimation achieved through maximum likelihood estimation. The predictive performance of the BN model was assessed using the confusion matrix, and Netica software was utilized for visual prediction and diagnosis. RESULT: The study involved 3,824 participants, including 1,175 controls, 1,163 T2DM cases, 982 CAD cases, and 504 comorbidity cases. The BN model unveiled factors directly and indirectly impacting T2DM, such as age, region, education level, and family history (FH). Variables like exercise, LDL-C, TC, fruit, and sweet food intake exhibited direct effects, while smoking, alcohol consumption, occupation, heart rate, HDL-C, meat, and staple food intake had indirect effects. Similarly, for CAD, factors with direct and indirect effects included age, smoking, SBP, exercise, meat, and fruit intake, while sleeping time and heart rate showed direct effects. Regarding T2DM and CAD comorbidities, age, FBG, SBP, fruit, and sweet intake demonstrated both direct and indirect effects, whereas exercise and HDL-C exhibited direct effects, and region, education level, DBP, and TC showed indirect effects. CONCLUSION: The BN model constructed using the Tabu search algorithm showcased robust predictive performance, reliability, and applicability in forecasting disease probabilities for T2DM, CAD, and their comorbidities. These findings offer valuable insights for enhancing prevention and control strategies and exploring the application of BN in predicting and diagnosing chronic diseases.


Subject(s)
Bayes Theorem , Comorbidity , Coronary Disease , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/epidemiology , Middle Aged , Female , Male , Coronary Disease/epidemiology , Case-Control Studies , Aged , Adult , Risk Factors
15.
Gut Microbes ; 16(1): 2347725, 2024.
Article in English | MEDLINE | ID: mdl-38722028

ABSTRACT

The gut commensal bacteria Christensenellaceae species are negatively associated with many metabolic diseases, and have been seen as promising next-generation probiotics. However, the cultured Christensenellaceae strain resources were limited, and their beneficial mechanisms for improving metabolic diseases have yet to be explored. In this study, we developed a method that enabled the enrichment and cultivation of Christensenellaceae strains from fecal samples. Using this method, a collection of Christensenellaceae Gut Microbial Biobank (ChrisGMB) was established, composed of 87 strains and genomes that represent 14 species of 8 genera. Seven species were first described and the cultured Christensenellaceae resources have been significantly expanded at species and strain levels. Christensenella strains exerted different abilities in utilization of various complex polysaccharides and other carbon sources, exhibited host-adaptation capabilities such as acid tolerance and bile tolerance, produced a wide range of volatile probiotic metabolites and secondary bile acids. Cohort analyses demonstrated that Christensenellaceae and Christensenella were prevalent in various cohorts and the abundances were significantly reduced in T2D and OB cohorts. At species level, Christensenellaceae showed different changes among healthy and disease cohorts. C. faecalis, F. tenuis, L. tenuis, and Guo. tenuis significantly reduced in all the metabolic disease cohorts. The relative abundances of C. minuta, C. hongkongensis and C. massiliensis showed no significant change in NAFLD and ACVD. and C. tenuis and C. acetigenes showed no significant change in ACVD, and Q. tenuis and Geh. tenuis showed no significant change in NAFLD, when compared with the HC cohort. So far as we know, this is the largest collection of cultured resource and first exploration of Christensenellaceae prevalences and abundances at species level.


Subject(s)
Feces , Gastrointestinal Microbiome , Humans , Feces/microbiology , Clostridiales/genetics , Clostridiales/metabolism , Clostridiales/isolation & purification , Clostridiales/classification , Probiotics/metabolism , Metabolomics , Genomics , Male , Phylogeny , Female , Genome, Bacterial
16.
J Affect Disord ; 358: 383-390, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38735583

ABSTRACT

BACKGROUND: Healthier lifestyle decreased the risk of mental disorders (MDs) such as depression and anxiety. However, research on the effects of a comprehensive healthy lifestyle on their progression is lacking. METHODS: 385,704 individuals without baseline MDs from the UK Biobank cohort were included. A composite healthy lifestyle score was computed by assessing alcohol intake, smoking status, television viewing time, physical activity, sleep duration, fruit and vegetable intake, oily fish intake, red meat intake, and processed meat intake. Follow-up utilized hospital and death register records. Multistate model was used to examine the role of healthy lifestyle on the progression of specific MDs, while a piecewise Cox regression model was utilized to assess the influence of healthy lifestyle across various phases of disease progression. RESULTS: Higher lifestyle score reduced risks of transitions from baseline to anxiety and depression, as well as from anxiety and depression to comorbidity, with corresponding hazard ratios (HR) and 95 % confidence intervals (CI) of 0.94 (0.93, 0.95), 0.90 (0.89, 0.91), 0.94 (0.91, 0.98), and 0.95 (0.92, 0.98), respectively. Healthier lifestyle decreased the risk of transitioning from anxiety to comorbidity within 2 years post-diagnosis, with HR 0.93 (0.88, 0.98). Higher lifestyle scores at 2-4 years and 4-6 years post-depression onset were associated with reduced risk of comorbidity, with HR 0.93 (0.87, 0.99) and 0.92 (0.86, 0.99), respectively. LIMITATION: The generalizability to other ethnic groups is limited. CONCLUSION: This study observed a protective role of holistic healthy lifestyle in the trajectory of MDs and contributed to identifying critical progression windows.


Subject(s)
Biological Specimen Banks , Disease Progression , Healthy Lifestyle , Humans , Male , Female , Middle Aged , United Kingdom/epidemiology , Prospective Studies , Incidence , Aged , Adult , Comorbidity , Anxiety/epidemiology , Depression/epidemiology , Mental Disorders/epidemiology , Exercise , Proportional Hazards Models , Alcohol Drinking/epidemiology , Smoking/epidemiology , UK Biobank
17.
Cancer Res Commun ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767454

ABSTRACT

Cancer cells with DNA repair defects (e.g., BRCA1/2 mutant cells) are vulnerable to PARP inhibitors (PARPi) due to induction of synthetic lethality. However, recent clinical evidence has shown that PARPi can prevent the growth of some cancers irrespective of their BRCA1/2 status, suggesting alternative mechanisms of action. We previously discovered one such mechanism in breast cancer involving DDX21, an RNA helicase that localizes to the nucleoli of cells and is a target of PARP1. We have now extended this observation in endometrial and ovarian cancers and provided links to patient outcomes. When PARP1-mediated ADPRylation of DDX21 is inhibited by niraparib, DDX21 is mislocalized to the nucleoplasm resulting in decreased rDNA transcription, which leads to a reduction in ribosome biogenesis, protein translation, and ultimately endometrial and ovarian cancer cell growth. High PARP1 expression was associated with high nucleolar localization of DDX21 in both cancers. High nucleolar DDX21 negatively correlated with calculated IC50s for niraparib. By studying endometrial cancer patient samples, we were able to show that high DDX21 nucleolar localization was significantly associated with decreased survival. Our study suggests that the use of PARP inhibitors as a cancer therapeutic can be expanded to further types of cancers and that DDX21 localization can potentially be used as a prognostic factor and as a biomarker for response to PARPi.

18.
Artif Intell Med ; 153: 102885, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38749309

ABSTRACT

Medical Event Prediction (MEP) based on Electronic Medical Records (EMR) is an essential and valuable task for healthcare. For a patient, information in the EMR can be organized into a structured sequence, consisting of multiple visits each with details about visit time and various types of medical events. As the time intervals between neighboring visits are irregular and the medical events at different visits can vary significantly, MEP based on EMR is still challenging. Many studies have been proposed to model the irregular time intervals, relations among different types of medical events within each visit and relations among medical events across visits, and reported exciting results. However, most of these studies focus on two out of the three aspects mentioned above, with only a few addressing all the three aspects simultaneously. In this study, we propose a novel network, the Time-Sensitive Orthogonal Attention Network (TSOANet), which can fully utilize the irregular time intervals, relations among different types of medical events within and across visits. In particular, we design two key components: (1) Time-Sensitive Block, used to model the time intervals at both local and global levels to determine the impact of each visit in EMR; (2) Orthogonal Attention Block, used to model relations among different types of medical events within each visit and across visits in two axes, that is, event axis and time axis. Extensive experiments on two public real-world EMR datasets demonstrate that TSOANet outperforms the state-of-the-art models for various prediction tasks, thereby verifying the effectiveness of our approach. The source code of TSOANet is released at https://github.com/chh13502/TSOANet.

19.
Acad Radiol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38749869

ABSTRACT

RATIONALE AND OBJECTIVES: This study aimed to develop a diagnostic model based on clinical and CT features for identifying clear cell renal cell carcinoma (ccRCC) in small renal masses (SRMs). MATERIAL AND METHODS: This retrospective multi-centre study enroled patients with pathologically confirmed SRMs. Data from three centres were used as training set (n = 229), with data from one centre serving as an independent test set (n = 81). Univariate and multivariate logistic regression analyses were utilised to screen independent risk factors for ccRCC and build the classification and regression tree (CART) diagnostic model. The area under the curve (AUC) was used to evaluate the performance of the model. To demonstrate the clinical utility of the model, three radiologists were asked to diagnose the SRMs in the test set based on professional experience and re-evaluated with the aid of the CART model. RESULTS: There were 310 SRMs in 309 patients and 71% (220/310) were ccRCC. In the testing cohort, the AUC of the CART model was 0.90 (95% CI: 0.81, 0.97). For the radiologists' assessment, the AUC of the three radiologists based on the clinical experience were 0.78 (95% CI:0.66,0.89), 0.65 (95% CI:0.53,0.76), and 0.68 (95% CI:0.57,0.79). With the CART model support, the AUC of the three radiologists were 0.93 (95% CI:0.86,0.97), 0.87 (95% CI:0.78,0.95) and 0.87 (95% CI:0.78,0.95). Interobserver agreement was improved with the CART model aids (0.323 vs 0.654, P < 0.001). CONCLUSION: The CART model can identify ccRCC with better diagnostic efficacy than that of experienced radiologists and improve diagnostic performance, potentially reducing the number of unnecessary biopsies.

20.
Int J Part Ther ; 11: 100001, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38757076

ABSTRACT

Purpose: To describe the commissioning of real-time gated proton therapy (RGPT) and the establishment of an appropriate clinical workflow for the treatment of patients. Materials and Methods: Hitachi PROBEAT provides pencil beam scanning proton therapy with an advanced onboard imaging system including real-time fluoroscopy. RGPT utilizes a matching score to provide instantaneous system performance feedback and quality control for patient safety. The CIRS Dynamic System combined with a Thorax Phantom or plastic water was utilized to mimic target motion. The OCTAVIUS was utilized to measure end-to-end dosimetric accuracy for a moving target across a range of simulated situations. Using this dosimetric data, the gating threshold was carefully evaluated and selected based on the intended treatment sites and planning techniques. An image-guidance workflow was developed and applied to patient treatment. Results: Dosimetric data demonstrated that proton plan delivery uncertainty could be within 2 mm for a moving target. The dose delivery to a moving target could pass 3%/3 mm gamma analysis following the commissioning process and application of the clinical workflow detailed in this manuscript. A clinical workflow was established and successfully applied to patient treatment utilizing RGPT. Prostate cancer patients with implanted platinum fiducial markers were treated with RGPT. Their target motion and gating signal data were available for intrafraction motion analysis. Conclusion: Real-time gated proton therapy with the Hitachi System has been fully investigated and commissioned for clinical application. RGPT can provide advanced and reliable real-time image guidance to enhance patient safety and inform important treatment planning parameters, such as planning target volume margins and uncertainty parameters for robust plan optimization. RGPT improved the treatment of patients with prostate cancer in situations where intrafraction motion is more than defined tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL
...