Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(25): e2314294, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572797

ABSTRACT

Current synthetic grafts for ligament rupture repair often fail to integrate well with the surrounding biological tissue, leading to complications such as graft wear, fatigue, and subsequent re-rupture. To address this medical challenge, this study aims at advancing the development of a biological ligament through the integration of physiologically-inspired principles and tissue engineering strategies. In this study, interfacial polyelectrolyte complexation (IPC) spinning technique, along with a custom-designed collection system, to fabricate a hierarchical scaffold mimicking native ligament structure, is utilized. To emulate the bone-ligament interface and alleviate stress concentration, a hydroxyapatite (HAp) mineral gradient is strategically introduced near both ends of the scaffold to enhance interface integration and diminish the risk of avulsion rupture. Biomimetic viscoelasticity is successfully displayed to provide similar mechanical support to native ligamentous tissue under physiological conditions. By introducing the connective tissue growth factor (CTGF) and conducting mesenchymal stem cells transplantation, the regenerative potential of the synthetic ligament is significantly amplified. This pioneering study offers a multifaceted solution combining biomimetic materials, regenerative therapies, and advanced techniques to potentially transform ligament rupture treatment.


Subject(s)
Biomimetic Materials , Ligaments , Polyelectrolytes , Regeneration , Tissue Scaffolds , Ligaments/chemistry , Ligaments/physiology , Tissue Scaffolds/chemistry , Polyelectrolytes/chemistry , Biomimetic Materials/chemistry , Animals , Durapatite/chemistry , Tissue Engineering/methods , Mesenchymal Stem Cells/cytology , Humans
2.
Biochem Pharmacol ; 190: 114622, 2021 08.
Article in English | MEDLINE | ID: mdl-34043967

ABSTRACT

Lung cancer is the leading cause of cancer deaths in the world. Non-small cell lung cancer (NSCLC), with poor prognosis and resistance to chemoradiotherapy, is the most common histological type of lung cancer. Therefore, it is necessary to develop new and more effective treatment strategy for NSCLC. Nur77, an orphan member of the nuclear receptor superfamily, induces apoptosis in cancer cells including NSCLC cells, by high expression and translocation to mitochondria. Small molecules trigger expression and mitochondrial localization of Nur77 may be an ideal anti-cancer drug candidate. Here, we report malayoside, a cardiac glycoside in the extract of Antiaris toxicaria Lesch., had different sensitivities to NSCLC cells. Malayoside induced apoptosis in NCI-H460 cells. Meanwhile, malayoside induced Nur77 expression and mitochondrial localization, and its induction of apoptosis was Nur77-dependent. To investigate the molecular mechanism of malayoside inducing Nur77 and apoptosis, we found that malayoside activated MAPK signaling pathway, including both ERK and p38 phosphorylation. The suppression of MAPK signaling activation inhibited the expression of Nur77 and apoptosis induced by malayoside. Our studies in nude mice showed that malayside potently inhibited the growth of tumor cells in vivo. Furthermore, the anti-cancer effect of malayosidwas in vivo was also related to the elevated expression of Nur77, p-ERK, and p-p38 proteins. Our results suggest that malayoside possesses an anti-NSCLC activity in vitro and in vivo mainly via activation of MAPK-Nur77 signaling pathway, indicating that malayoside is a promising chemotherapeutic candidate for NSCLC.


Subject(s)
Antiaris/chemistry , Apoptosis/drug effects , Cardiac Glycosides/pharmacology , Mitogen-Activated Protein Kinase Kinases/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Animals , Carcinoma, Non-Small-Cell Lung , Cardiac Glycosides/chemistry , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Mice, Nude , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Phytotherapy , Protein Transport/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...