Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794606

ABSTRACT

Self-powered electronic equipment has rapidly developed in the fields of sensing, motion monitoring, and energy collection, posing a greater challenge to triboelectric materials. Triboelectric materials need to enhance their electrical conductivity and mechanical strength to address the increasing demand for stability and to mitigate unpredictable physical damage. In this study, polyaniline-modified cellulose was prepared by means of in situ polymerization and compounded with polydimethylsiloxane, resulting in a triboelectric material with enhanced strength and conductivity. The material was fabricated into a tubular triboelectric nanogenerator (TENG) (G-TENG), and an electrocatalytic pretreatment of mixed office waste paper (MOW) pulp was performed using papermaking white water as the flowing liquid to improve the deinking performance. The electrical output performance of G-TENG is highest at a flow rate of 400 mL/min, producing a voltage of 22.76 V and a current of 1.024 µA. Moreover, the deinking effect of MOW was enhanced after the electrical pretreatment. This study explores the potential application of G-TENG as a self-powered sensor power supply and emphasizes its prospect as an energy collection device.

2.
J Chromatogr A ; 1722: 464884, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38615558

ABSTRACT

The removal of excess bilirubin from blood is of great clinical importance. Reduced graphene oxide (rGO) is often used to efficiently remove bilirubin. However, thin rGO pieces tend to aggregate in the aqueous phase because they are hydrophobic. In this context, we propose an effective strategy based on the chitosan-assisted (CS-assisted) dispersion of rGO to produce high-performance bilirubin-adsorbing microspheres. CS possesses a hydrophobic CH structure, which offers strong hydrophobic interactions with rGO that assist its dispersion, and the large number of hydrophilic sites of CS increases the hydrophilicity of rGO. CS serves as a dispersant in a surfactant-like manner to achieve a homogeneous and stable CS/rGO dispersion by simply and gently stirring CS and rGO in a LiOH/KOH/urea/H2O system. Subsequently, CS/rGO hybrid microspheres were prepared by emulsification. CS ensures blood compatibility as a base material, and the entrapped rGO contributes to mechanical strength and a high adsorption capacity. The CS/rGO microspheres exhibited a high bilirubin adsorption capacity (215.56 mg/g), which is significantly higher than those of the rGO and CS microspheres. The determined mass-transfer factors revealed that the rich pores of the CS/rGO microspheres promote mass transfer during bilirubin adsorption (equilibrium is almost achieved within 30 min). The CS/rGO microspheres are promising candidates for bilirubin removal owing to a combination of high strength, blood compatibility, and high adsorption capacity.


Subject(s)
Bilirubin , Chitosan , Graphite , Hydrophobic and Hydrophilic Interactions , Microspheres , Graphite/chemistry , Chitosan/chemistry , Bilirubin/chemistry , Bilirubin/isolation & purification , Bilirubin/blood , Adsorption , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...