Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 14(22): e1800589, 2018 May.
Article in English | MEDLINE | ID: mdl-29687604

ABSTRACT

Yolk-shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long-term cycling. Specifically, the NiO with carboxyl-functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino-functionalized GQDs (NiO/GQDsNH2 ). It delivers a capacity of ≈1081 mAh g-1 (NiO contribution: ≈1182 mAh g-1 ) after 250 cycles at 0.1 A g-1 . In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g-1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g-1 retained after cycling. Except for the yolk-shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+ . Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...