Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38684007

ABSTRACT

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Subject(s)
Amphibians , Biodiversity , Phylogeny , Animals , Amphibians/classification , China , Conservation of Natural Resources
2.
Genome Biol Evol ; 14(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-35137061

ABSTRACT

The gray wolf (Canis lupus) is among the few large carnivores that survived the Late Pleistocene megafaunal extinctions. Thanks to their complex history of admixture and extensive geographic range, the number of gray wolf subspecies and their phylogenetic relationships remain poorly understood. Here, we perform whole-genome sequencing of a gray wolf collected from peninsular India that was phenotypically distinct from gray wolves outside India. Genomic analyses reveal that the Indian gray wolf is an evolutionarily distinct lineage that diverged from other extant gray wolf lineages ∼110 thousand years ago. Demographic analyses suggest that the Indian wolf population declined continuously decline since separating from other gray wolves and, today, has exceptionally low genetic diversity. We also find evidence for pervasive and mosaic gene flow between the Indian wolf and African canids including African wolf, Ethiopian wolf, and African wild dog despite their current geographical separation. Our results support the hypothesis that the Indian subcontinent was a Pleistocene refugium and center of diversification and further highlight the complex history of gene flow that characterized the evolution of gray wolves.


Subject(s)
Wolves , Animals , Gene Flow , Hybridization, Genetic , India , Phylogeny , Wolves/genetics
3.
Natl Sci Rev ; 8(9): nwaa263, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34691726

ABSTRACT

The Himalaya are among the youngest and highest mountains in the world, but the exact timing of their uplift and origins of their biodiversity are still in debate. The Himalayan region is a relatively small area but with exceptional diversity and endemism. One common hypothesis to explain the rich montane diversity is uplift-driven diversification-that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We test this hypothesis in the Himalayan region using amphibians and reptiles, two environmentally sensitive vertebrate groups. In addition, analysis of diversification of the herpetofauna provides an independent source of information to test competing geological hypotheses of Himalayan orogenesis. We conclude that the origins of the Himalayan herpetofauna date to the early Paleocene, but that diversification of most groups was concentrated in the Miocene. There was an increase in both rates and modes of diversification during the early to middle Miocene, together with regional interchange (dispersal) between the Himalaya and adjacent regions. Our analyses support a recently proposed stepwise geological model of Himalayan uplift beginning in the Paleocene, with a subsequent rapid increase of uplifting during the Miocene, finally giving rise to the intensification of the modern South Asian Monsoon.

4.
Mol Phylogenet Evol ; 163: 107218, 2021 10.
Article in English | MEDLINE | ID: mdl-34082130

ABSTRACT

Montane frogs of the genus Quasipaa Dubois, 1992 occur from southern China to Southeast Asia (Frost 2021). Analyses of mtDNA (Cytb) and nuDNA data (Rag1, Rag2, Rhod, Tyr) for samples from 93 localities throughout its distribution yield a phylogeny. Clades A and B occur in Southeast Asia, clade C in northern Yangtze River, China, clade D in southwestern China, and clades E and F in southeastern China. Results place Q. yei within monophyletic Quasipaa and identify two new species. Based on nuDNA data, the basal split of clade A and B indicates an Indochinese origin of Quasipaa. The west-east diversification of five species across South China (Q. spinosa, Q. exilispinosa, Q. jiulongensis, Q. shini, Q. boulengeri) corresponds to topographic terrains II and III of China. Divergence of species from southeastern China (Q. shini, Q. jiulongensis, Q. spinosa, Q. exilispinosa) and southwestern China (Q. boulengeri) dates to 15.30-16.56 Ma (million years ago). A principal component analysis (PCA) and t-test involving 19 bioclimatic variables identifies significantly different environmental conditions between the two regions. Species' distribution models (SDM) for Q. spinosa and Q. boulengeri identify the best areas to be eastern and western South China, respectively. Thus, environmental variation appears to have influenced the genetic divergence and distributions of Quasipaa in South China. Mito-nuclear discordance indicates that some individuals of Q. exilispinosa and Q. spinosa hybridized historically.


Subject(s)
Anura , DNA, Mitochondrial , Animals , Anura/genetics , Cell Nucleus , China , DNA, Mitochondrial/genetics , Humans , Phylogeny
6.
Cell Res ; 30(8): 693-701, 2020 08.
Article in English | MEDLINE | ID: mdl-32581344

ABSTRACT

Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.


Subject(s)
Chickens/genetics , Genome , Phylogeny , Animal Distribution , Animals , Animals, Domestic/genetics , Asia , Domestication , Gene Pool , Geography , Likelihood Functions , Poultry/genetics , Selection, Genetic
7.
Mol Biol Evol ; 37(9): 2616-2629, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32384152

ABSTRACT

Genetic introgression not only provides material for adaptive evolution but also confounds our understanding of evolutionary history. This is particularly true for canids, a species complex in which genome sequencing and analysis has revealed a complex history of admixture and introgression. Here, we sequence 19 new whole genomes from high-altitude Tibetan and Himalayan wolves and dogs and combine these into a larger data set of 166 whole canid genomes. Using these data, we explore the evolutionary history and adaptation of these and other canid lineages. We find that Tibetan and Himalayan wolves are closely related to each other, and that ∼39% of their nuclear genome is derived from an as-yet-unrecognized wolf-like lineage that is deeply diverged from living Holarctic wolves and dogs. The EPAS1 haplotype, which is present at high frequencies in Tibetan dog breeds and wolves and confers an adaptive advantage to animals living at high altitudes, was probably derived from this ancient lineage. Our study underscores the complexity of canid evolution and demonstrates how admixture and introgression can shape the evolutionary trajectories of species.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Biological Evolution , Dogs/genetics , Hybridization, Genetic , Wolves/genetics , Animals , Whole Genome Sequencing
8.
Zootaxa ; 4742(3): zootaxa.4742.3.7, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32230368

ABSTRACT

Myanmar, a biodiversity hotspot, harbors a striking diversity and endemism of species. Despite this, its herpetofauna remains one of the least explored in continental Asia due to restrictions of crossing political boundaries and infrastructure in remote regions. Many species in adjacent China and India are hypothesized to occur in Myanmar but records are wanting. Recent fieldwork found the frogs Polypedates braueri, Nasutixalus jerdonii and Oreolalax jingdongensis there, and the latter two species represent new generic records for Myanmar. All major morphological characters of these populations match the original descriptions. In addition, our matrilineal genealogy based on DNA barcoding confirms their identities. Overall, these findings confirm that the amphibian diversity is underestimated and this has important implications for conservation. Analyses indicate that northern Myanmar is a biogeographic corridor for the Himalayas, southern China, and northeastern India.


Subject(s)
Anura , Animals , Myanmar , Phylogeny
9.
Mol Phylogenet Evol ; 148: 106789, 2020 07.
Article in English | MEDLINE | ID: mdl-32173414

ABSTRACT

The genus Amolops ("torrent frogs") is one of the most species-rich genera in Ranidae, with 59 recognized species. This genus currently includes six species groups diagnosed mainly by morphology. Several recent molecular studies indicated that the classification of species groups within Amolops remains controversial, and key nodes in the phylogeny have been inadequately resolved. In addition, the diversity of Amolops remains poorly understood, especially for those from incompletely sampled regions. Herein, we investigate species-level diversity within the genus Amolops throughout southern China and Southeast Asia, and infer evolutionary relationships among the species using mtDNA data (16S, COI, and ND2). Molecular analyses indicate nine unnamed species, mostly distributed in the Himalayas. We then utilized anchored hybrid enrichment to generate a dataset representing the major mitochondrial lineages to resolve phylogenetic relationships, biogeography, and pattern of species diversification. Our resulting phylogeny strongly supports the monophyly of four previously identified species groups (the A. ricketti, A. daiyunensis, A. hainanensis, and A. monticola groups), but paraphyly for the A. mantzorum and A. marmoratus groups, as previously defined. We erect one new species group, the A. viridimaculatus group, and recognize Dubois' (1992) subgenus Amo as the A. larutensis species group. Biogeographic analysis suggests that Amolops originated on the Indo-Burma/Thai-Malay Peninsula at the Eocene/Oligocene boundary, and dispersed outward, exemplifying a common pattern observed for the origin of Asian biodiversity. The early divergence within Amolops coincides with the Himalayan uplift and the lateral extrusion of Indochina at the Oligocene/Miocene boundary. Our results show that paleoclimatic and geomorphological events have profoundly influenced the patterns of lineage diversification within Amolops.


Subject(s)
Biodiversity , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Phylogeny , Phylogeography , Ranidae/genetics , Animals , Asia, Southeastern , Base Sequence , Bayes Theorem , Spatio-Temporal Analysis , Species Specificity
10.
Mol Phylogenet Evol ; 145: 106724, 2020 04.
Article in English | MEDLINE | ID: mdl-31881327

ABSTRACT

Rhacophoridae are one of the most speciose and ecologically diverse families of amphibians. Resolution of their evolutionary relationships is key to understanding the accumulation of biodiversity, yet previous hypotheses based on Sanger sequencing exhibit much discordance amongst generic relationships. This conflict precludes the making of sound macroevolutionary conclusions. Herein, we conduct the first phylogenomic study using broad-scale sampling and sequences of 352 nuclear DNA loci obtained using anchored hybrid enrichment targeted sequencing. The robust time-calibrated phylogenetic hypothesis clarifies several long-disputed relationships and facilitates the testing of evolutionary hypotheses on spatiotemporal diversification and reproductive modes. The major extant lineages of Rhacophoridae appear to have radiated in mainland Asia, and the spatiotemporal process corresponds with several common accumulations of biodiversity in Asia. Analyses do not detect any case of "Out of Himalaya" in Rhacophoridae. All transitions of reproductive modes appear to have evolved in an ordered, gradual sequence associated with gaining independence of standing water for larval development. The different reproductive modes are phylogenetically conserved and the completion of their transitions appear to have occurred over a period of ~30 Ma, which does not fit a pattern of a rapid burst of diversification. Innovations in reproductive modes associate statistically with the uneven distribution of species-richness between clades, where higher diversification is linked to increased terrestrial modes of reproduction. These results strengthen the hypothesis that breeding innovations drive diversification by providing new opportunities for ecological release and dispersion.


Subject(s)
Anura/classification , Biological Evolution , Animals , Anura/genetics , Anura/growth & development , Bayes Theorem , Biodiversity , Cell Nucleus/genetics , Phylogeny , Phylogeography , Reproduction
11.
Zool Res ; 40(6): 558-563, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31631588

ABSTRACT

A new bush frog species, Raorchestes cangyuanensis sp. nov., from Cangyuan, Yunnan Province, China, is described based on morphological and molecular analyses. It differs from all known congeners by a combination of the following characters: body size small, adult snout-vent length (SVL) 16.1-20.0 mm in males (n=3); tympanum indistinct; tips of all fingers and toes expanded into discs with circummarginal grooves; rudimentary webbing between toes; fingers and toes with lateral dermal fringes; inner and outer metacarpal tubercles present; heels meeting when limbs held at right angles to body; crotch with a distinct black patch; discs of fingers and toes orange; male with external single subgular vocal sac and reddish nuptial pad at the base of first finger.


Subject(s)
Anura/anatomy & histology , Anura/classification , Animals , Anura/genetics , China , Male , Phylogeny , Species Specificity
12.
Proc Natl Acad Sci U S A ; 116(9): 3646-3655, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808754

ABSTRACT

Viviparous (live-bearing) vertebrates have evolved repeatedly within otherwise oviparous (egg-laying) clades. Over two-thirds of these changes in vertebrate reproductive parity mode happened in squamate reptiles, where the transition has happened between 98 and 129 times. The transition from oviparity to viviparity requires numerous physiological, morphological, and immunological changes to the female reproductive tract, including eggshell reduction, delayed oviposition, placental development for supply of water and nutrition to the embryo by the mother, enhanced gas exchange, and suppression of maternal immune rejection of the embryo. We performed genomic and transcriptomic analyses of a closely related oviparous-viviparous pair of lizards (Phrynocephalus przewalskii and Phrynocephalus vlangalii) to examine these transitions. Expression patterns of maternal oviduct through reproductive development of the egg and embryo differ markedly between the two species. We found changes in expression patterns of appropriate genes that account for each of the major aspects of the oviparity to viviparity transition. In addition, we compared the gene sequences in transcriptomes of four oviparous-viviparous pairs of lizards in different genera (Phrynocephalus, Eremias, Scincella, and Sphenomorphus) to look for possible gene convergence at the sequence level. We discovered low levels of convergence in both amino acid replacement and evolutionary rate shift. This suggests that most of the changes that produce the oviparity-viviparity transition are changes in gene expression, so occasional reversals to oviparity from viviparity may not be as difficult to achieve as has been previously suggested.


Subject(s)
Evolution, Molecular , Oviparity/genetics , Transcriptome/genetics , Viviparity, Nonmammalian/genetics , Animals , Female , Gene Expression Regulation, Developmental , Genomics , Lizards/genetics , Lizards/growth & development , Phylogeny , Placentation/genetics , Pregnancy , Reproduction/genetics , Snakes/genetics , Snakes/growth & development
13.
Proc Natl Acad Sci U S A ; 115(22): E5056-E5065, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29760079

ABSTRACT

Tibetan frogs, Nanorana parkeri, are differentiated genetically but not morphologically along geographical and elevational gradients in a challenging environment, presenting a unique opportunity to investigate processes leading to speciation. Analyses of whole genomes of 63 frogs reveal population structuring and historical demography, characterized by highly restricted gene flow in a narrow geographic zone lying between matrilines West (W) and East (E). A population found only along a single tributary of the Yalu Zangbu River has the mitogenome only of E, whereas nuclear genes of W comprise 89-95% of the nuclear genome. Selection accounts for 579 broadly scattered, highly divergent regions (HDRs) of the genome, which involve 365 genes. These genes fall into 51 gene ontology (GO) functional classes, 14 of which are likely to be important in driving reproductive isolation. GO enrichment analyses of E reveal many overrepresented functional categories associated with adaptation to high elevations, including blood circulation, response to hypoxia, and UV radiation. Four genes, including DNAJC8 in the brain, TNNC1 and ADORA1 in the heart, and LAMB3 in the lung, differ in levels of expression between low- and high-elevation populations. High-altitude adaptation plays an important role in maintaining and driving continuing divergence and reproductive isolation. Use of total genomes enabled recognition of selection and adaptation in and between populations, as well as documentation of evolution along a stepped cline toward speciation.


Subject(s)
Anura/genetics , Anura/physiology , Gene Flow/genetics , Genetic Speciation , Animals , Hybridization, Genetic , Metagenomics , Phylogeny , Selection, Genetic , Tibet
14.
Mol Phylogenet Evol ; 124: 162-171, 2018 07.
Article in English | MEDLINE | ID: mdl-29530499

ABSTRACT

Southeast Asia and southern China (SEA-SC) harbor a highly diverse and endemic flora and fauna that is under increasing threat. An understanding of the biogeographical history and drivers of this diversity is lacking, especially in some of the most diverse and threatened groups. The Asian leaf-litter frog genus Leptolalax Dubois 1980 is a forest-dependent genus distributed throughout SEA-SC, making it an ideal study group to examine specific biogeographic hypotheses. In addition, the diversity of this genus remains poorly understood, and the phylogenetic relationships among species of Leptolalax and closely related Leptobrachella Smith 1928 remain unclear. Herein, we evaluate species-level diversity based on 48 of the 53 described species from throughout the distribution of Leptolalax. Molecular analyses reveal many undescribed species, mostly in southern China and Indochina. Our well-resolved phylogeny based on multiple nuclear DNA markers shows that Leptolalax is not monophyletic with respect to Leptobrachella and, thus, we assign the former to being a junior synonym of the latter. Similarly, analyses reject monophyly of the two subgenera of Leptolalax. The diversification pattern of the group is complex, involving a high degree of sympatry and prevalence of microendemic species. Northern Sundaland (Borneo) and eastern Indochina (Vietnam) appear to have played pivotal roles as geographical centers of diversification, and paleoclimatic changes and tectonic movements seem to have driven the major divergence of clades. Analyses fail to reject an "upstream" colonization hypothesis, and, thus, the genus appears to have originated in Sundaland and then colonized mainland Asia. Our results reveal that both vicariance and dispersal are responsible for current distribution patterns in the genus.


Subject(s)
Anura/classification , Biodiversity , Phylogeny , Animals , Asia , Base Sequence , Bayes Theorem , Phylogeography , Species Specificity , Time Factors
16.
Mol Phylogenet Evol ; 106: 28-43, 2017 01.
Article in English | MEDLINE | ID: mdl-27622725

ABSTRACT

The horned toad assemblage, genus Megophrys sensu lato, currently includes three groups previously recognized as the genera Atympanophrys, Xenophrys and Megophrys sensu stricto. The taxonomic status and species composition of the three groups remain controversial due to conflicting phenotypic analyses and insufficient phylogenetic reconstruction; likewise, the position of the monotypic Borneophrys remains uncertain with respect to the horned toads. Further, the diversity of the horned toads remains poorly understood, especially for widespread species. Herein, we evaluate species-level diversity based on 45 of the 57 described species from throughout southern China, Southeast Asia and the Himalayas using Bayesian inference trees and the Generalized Mixed Yule Coalescent (GMYC) approach. We estimate the phylogeny using both mitochondrial and nuclear DNA data. Analyses reveal statistically significant mito-nuclear discordance. All analyses resolve paraphyly for horned toads involving multiple strongly supported clades. These clades correspond with geography. We resurrect the genera Atympanophrys and Xenophrys from the synonymy of Megophrys to eliminate paraphyly of Megophrys s.l. and to account for the morphological, molecular and biogeographic differences among these groups, but we also provide an alternative option. Our study suggests that Borneophrys is junior synonym of Megophrys sensu stricto. We provide an estimation of timeframe for the horned toads. The mitochondrial and nuclear trees indicate the presence of many putative undescribed species. Widespread species, such as Xenophrys major and X. minor, likely have dramatically underestimated diversity. The integration of morphological and molecular evidence can validate this discovery. Montane forest dynamics appear to play a significant role in driving diversification of horned toads.


Subject(s)
Anura/classification , Animals , Anura/genetics , Bayes Theorem , Bufonidae/classification , Bufonidae/genetics , China , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , DNA, Mitochondrial/classification , DNA, Mitochondrial/genetics , Phylogeny , Phylogeography , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
17.
Syst Biol ; 65(5): 824-42, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27288482

ABSTRACT

True frogs of the genus Rana are widely used as model organisms in studies of development, genetics, physiology, ecology, behavior, and evolution. Comparative studies among the more than 100 species of Rana rely on an understanding of the evolutionary history and patterns of diversification of the group. We estimate a well-resolved, time-calibrated phylogeny from sequences of six nuclear and three mitochondrial loci sampled from most species of Rana, and use that phylogeny to clarify the group's diversification and global biogeography. Our analyses consistently support an "Out of Asia" pattern with two independent dispersals of Rana from East Asia to North America via Beringian land bridges. The more species-rich lineage of New World Rana appears to have experienced a rapid radiation following its colonization of the New World, especially with its expansion into montane and tropical areas of Mexico, Central America, and South America. In contrast, Old World Rana exhibit different trajectories of diversification; diversification in the Old World began very slowly and later underwent a distinct increase in speciation rate around 29-18 Ma. Net diversification is associated with environmental changes and especially intensive tectonic movements along the Asian margin from the Oligocene to early Miocene. Our phylogeny further suggests that previous classifications were misled by morphological homoplasy and plesiomorphic color patterns, as well as a reliance primarily on mitochondrial genes. We provide a phylogenetic taxonomy based on analyses of multiple nuclear and mitochondrial gene loci. [Amphibians; biogeography; diversification rate; Holarctic; transcontinental dispersal.


Subject(s)
Phylogeny , Ranidae/classification , Americas , Animals , Asia , Bayes Theorem , Asia, Eastern , Ranidae/genetics , Sequence Analysis, DNA
18.
Dalton Trans ; 45(19): 8182-91, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27095548

ABSTRACT

Nine dinuclear Ln(iii) complexes, [Ln(dbm)2(L)]2 (Ln = Eu (), Tb (), Dy (), Ho (), Er ()) and [Ln(dbm)2(L')]2 (Ln = Tb (), Dy (), Ho (), Er ()) (dbm = 1,3-diphenyl-1,3-propanedione, HL = 2-[[(4-methoxy-phenyl)imino]methyl]-8-hydroxy-quinoline and HL' = 2-[[(4-ethoxyphenyl)imino]methyl]-8-hydroxyquinoline) have been synthesized, and structurally and magnetically characterized. The nine complexes are all phenoxo-O bridged binuclear complexes, in which Ln1 and Ln1a are in an eight-coordinated environment bridged by two phenoxido oxygen atoms of two 8-hydroxyquinoline Schiff base ligands. Although complexes and have very similar structures, magnetic studies reveal that they exhibit different magnetic relaxation behaviors with the effective barriers (ΔE/kB) of 34.5 K for and 67.6 K for . The dissimilar dynamic magnetic behaviors of and mostly result from the different electron-donating effect induced by the two alkoxy (-OCH3 and -OC2H5) of the 8-hydroxyquinoline Schiff base ligands. Meanwhile, for complexes , , and , there are no observed magnetic relaxation behaviors under a zero dc field. In addition, the luminescence properties of , and were studied.

19.
Curr Zool ; 62(6): 531-543, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29491943

ABSTRACT

South China and Indochina host striking species diversity and endemism. Complex tectonic and climatic evolutions appear to be the main drivers of the biogeographic patterns. In this study, based on the geologic history of this region, we test 2 hypotheses using the evolutionary history of Microhyla fissipes species complex. Using DNA sequence data from both mitochondrial and nuclear genes, we first test the hypothesis that the Red River is a barrier to gene flow and dispersal. Second, we test the hypothesis that Pleistocene climatic cycling affected the genetic structure and population history of these frogs. We detect 2 major genetic splits that associate with the Red River. Time estimation suggests that late Miocene tectonic movement associated with the Red River drove their diversification. Species distribution modeling (SDM) resolves significant ecological differences between sides of the Red River. Thus, ecological divergence also probably promoted and maintained the diversification. Genogeography, historical demography, and SDM associate patterns in southern China with climate changes of the last glacial maximum (LGM), but not Indochina. Differences in geography and climate between the 2 areas best explain the discovery. Responses to the Pleistocene glacial-interglacial cycling vary among species and regions.

20.
Sci Rep ; 5: 17551, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26619819

ABSTRACT

The crab-eating frog, Fejervarya cancrivora, is the only frog that lives near seas. It tolerates increased environmental concentrations of sodium, chloride and potassium partly by raising ion and urea levels in its blood plasma. The molecular mechanism of the adaptation remains rarely documented. Herein, we analyze transcriptomes of the crab-eating frog and its closely related saline-intolerant species, F. limnocharis, to explore the molecular basis of adaptations to such extreme environmental conditions. Analyses reveal the potential genetic mechanism underlying the adaptation to salinity for the crab-eating frog. Genes in categories associated with ion transport appear to have evolved rapidly in F. cancrivora. Both positively selected and differentially expressed genes exhibit enrichment in the GO category regulation of renal sodium excretion. In this category, the positively selected sites of ANPEP and AVPR2 encode CD13 and V2 receptors, respectively; they fall precisely on conserved domains. More differentially expressed rapidly evolved genes occur in the kidney of F. cancrivora than in F. limnocharis. Four genes involved in the regulation of body fluid levels show signs of positive selection and increased expression. Significant up-regulation occurs in several genes of F. cancrivora associated with renin-angiotensin system and aldosterone-regulated sodium reabsorption pathways, which relate to osmotic regulation.


Subject(s)
Adaptation, Physiological/physiology , Amphibian Proteins/biosynthesis , Anura/metabolism , Gene Expression Regulation/physiology , Sodium Chloride , Transcriptome/physiology , Water-Electrolyte Balance/physiology , Amphibian Proteins/genetics , Animals , Anura/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...