Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
J Hazard Mater ; 474: 134762, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38823099

ABSTRACT

Bioremediation of cadmium (Cd) pollution, a recognized low-carbon green environmental protection technology, is significantly enhanced by the discovery of Cd-tolerant microorganisms and their underlying tolerance mechanisms. This study presents Colpoda sp., a soil ciliate with widespread distribution, as a novel bioindicator and bioremediator for Cd contamination. With a 24 h-LC50 of 5.39 mg l-1 and an IC50 of 24.85 µg l-1 in Cd-contaminated water, Colpoda sp. achieves a maximum bioaccumulation factor (BAF) of 3.58 and a Cd removal rate of 32.98 ± 0.74 % within 96 h. The toxic responses of Colpoda sp. to Cd stress were assessed through cytological observation with transmission electron microscopy (TEM), oxidative stress kinase activity, and analysis of Cd-metallothionein (Cd-MTs) and the cd-mt gene via qRT-PCR. The integrated biomarker response index version 2 (IBRv2) and structural equation models (SEM) were utilized to analyze key factors and mechanisms, revealing that the up-regulation of Cd-MTs and cd-mt expression, rather than the oxidative stress system, is the primary determinant of Cd accumulation and tolerance in Colpoda sp. The ciliate's ability to maintain growth under 24.85 µg l-1 Cd stress and its capacity to absorb and accumulate Cd particles from water into cells are pivotal for bioremediation. A new mathematical formula and regression equations based on Colpoda sp.'s response parameters have been established to evaluate environmental Cd removal levels and design remediation schemes for contaminated sites. These findings provide a novel bioremediation and monitoring pathway for Cd remobilization and accumulation in soil and water, potentially revolutionizing the governance of Cd pollution.

2.
Radiother Oncol ; : 110367, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38834152

ABSTRACT

BACKGROUND: The number of metastatic lymph nodes (MLNs) is crucial for the survival of nasopharyngeal carcinoma (NPC), but manual counting is laborious. This study aims to explore the feasibility and prognostic value of automatic MLNs segmentation and counting. METHODS: We retrospectively enrolled 980 newly diagnosed patients in the primary cohort and 224 patients from two external cohorts. We utilized the nnUnet model for automatic MLNs segmentation on multimodal magnetic resonance imaging. MLNs counting methods, including manual delineation-assisted counting (MDAC) and fully automatic lymph node counting system (AMLNC), were compared with manual evaluation (Gold standard). RESULTS: In the internal validation group, the MLNs segmentation results showed acceptable agreement with manual delineation, with a mean Dice coefficient of 0.771. The consistency among three counting methods was as follows0.778 (Gold vs. AMLNC), 0.638 (Gold vs. MDAC), and 0.739 (AMLNC vs. MDAC). MLNs numbers were categorized into three-category variable (1-4, 5-9, > 9) and two-category variable (<4, ≥ 4) based on the gold standard and AMLNC. These categorical variables demonstrated acceptable discriminating abilities for 5-year overall survival (OS), progression-free, and distant metastasis-free survival. Compared with base prediction model, the model incorporating two-category AMLNC-counting numbers showed improved C-indexes for 5-year OS prediction (0.658 vs. 0.675, P = 0.045). All results have been successfully validated in the external cohort. CONCLUSIONS: The AMLNC system offers a time- and labor-saving approach for fully automatic MLNs segmentation and counting in NPC. MLNs counting using AMLNC demonstrated non-inferior performance in survival discrimination compared to manual detection.

3.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731569

ABSTRACT

Skin wounds, leading to infections and death, have a huge negative impact on healthcare systems around the world. Antibacterial therapy and the suppression of excessive inflammation help wounds heal. To date, the application of wound dressings, biologics and biomaterials (hydrogels, epidermal growth factor, stem cells, etc.) is limited due to their difficult and expensive preparation process. Cinnamomum burmannii (Nees & T. Nees) Blume is an herb in traditional medicine, and its essential oil is rich in D-borneol, with antibacterial and anti-inflammatory effects. However, it is not clear whether Cinnamomum burmannii essential oil has the function of promoting wound healing. This study analyzed 32 main components and their relative contents of essential oil using GC-MS. Then, network pharmacology was used to predict the possible targets of this essential oil in wound healing. We first proved this essential oil's effects in vitro and in vivo. Cinnamomum burmannii essential oil could not only promote the proliferation and migration of skin stromal cells, but also promote M2-type polarization of macrophages while inhibiting the expression of pro-inflammatory cytokines. This study explored the possible mechanism by which Cinnamomum burmannii essential oil promotes wound healing, providing a cheap and effective strategy for promoting wound healing.


Subject(s)
Cinnamomum , Oils, Volatile , Wound Healing , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Wound Healing/drug effects , Cinnamomum/chemistry , Animals , Mice , Cell Proliferation/drug effects , Cytokines/metabolism , Macrophages/drug effects , Macrophages/metabolism , Cell Movement/drug effects , Skin/drug effects , Humans
4.
Small ; : e2401345, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767495

ABSTRACT

Novel binder designs are shown to be fruitful in improving the electrochemical performance of silicon (Si)-based anodes. However, issues with mechanical damage from dramatic volume change and poor lithium-ion (Li+) diffusion kinetics in Si-based materials still need to be addressed. Herein, an aqueous self-repairing borate-type binder (SBG) with a web-like architecture and high ionic conductivity is designed for Si and SiO electrodes. The 3D web-like architecture of the SBG binder enables uniform stress distribution, while its self-repairing ability promotes effective stress dissipation and mechanical damage repair, thereby enhancing the damage tolerance of the electrode. The tetracoordinate boron ions ( - BO 4 - $ - {\mathrm{BO}}_4^ - $ ) in the SBG binder boosts the Li transportation kinetics of Si-based electrodes. Based on dynamic covalent and ionic conductive boronic ester bonds, the diverse requirements of the binder, including uniform stress distribution, self-repairing ability, and high ionic conductivity, can be met by simple components. Consequently, the proposed straightforward multifunction design strategy for binders based on dynamic boron chemistry provides valuable insights into fabricating high-performance Si-based anodes.

5.
J Biomed Res ; : 1-10, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38808546

ABSTRACT

Despite achieving a high cure rate with direct-acting antivirals (DAAs) in hepatitis C treatment, further research is needed to identify additional benefits of the DAA therapy. The current study evaluated liver fibrosis improvement in 848 hepatitis C patients treated with DAAs, who also achieved sustained virologic response (SVR). Using the fibrosis-4 (FIB-4) index, patients were categorized based on their baseline fibrosis level, and improvements in fibrosis were analyzed in both the short-term (9-26 weeks) and long-term (≥ 36 weeks) follow-up. The results showed a significant decrease in the FIB-4 index, indicating an improvement in liver fibrosis, in 63.00% of the patients during the short-term follow-up and 67.56% during the long-term follow-up. Short-term improvement was associated with factors including ribavirin (RBV) usage, blood cholinesterase levels, alanine transaminase levels, albumin levels, and the baseline FIB-4 index. Additionally, long-term improvement was associated with factors such as aspartate transaminase levels, total protein level, and the baseline FIB-4 index. The current study emphasizes the importance of continuous assessment and post-treatment monitoring of liver fibrosis, providing crucial insights for enhancing patient care in hepatitis C management.

6.
Pest Manag Sci ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808769

ABSTRACT

BACKGROUND: Cnaphalocrocis medinalis (C.medinalis) is an agricultural pest with recurrent outbreaks. The investigation into automated pest and disease detection technology holds significant value for in-field surveys. Current generic detection methods are inadequate due to arbitrary orientations and a wide range of aspect ratios in damage symptoms. To tackle these issues, we put forward a rotated two-stage detection method for in-field C.medinalis surveys. This method relies on an anchor-free rotated region proposal network (AF-R2PN), bypassing the need for hyper-parameter optimization induced by predefined anchor boxes. An in-field C.medinalis dataset is constructed during on-site pest surveys to validate the effectiveness of our method. RESULTS: The experimental results show that our method can accomplish 80% average precision (AP), surpassing the corresponding horizontal detector by 2.3%. The visualization results of our work showcase its exceptional localization capability over generic detection methods, facilitating inspection by plant protectors. Meanwhile, our proposed method outperforms other state-of-the-art rotated detection algorithms. The AF-R2PN module can generate superior arbitrary-oriented proposals even with a decreased number of proposals, balancing inference speed and detection performance among other rotated two-stage methods. CONCLUSION: The proposed method exhibits superiority in detecting C. medinalis damage under complex field conditions. It provides greater practical applicability during in-field surveys, enhancing their efficiency and coverage. The findings hold significance for pest and disease monitoring, providing important technical support for agricultural production. © 2024 Society of Chemical Industry.

7.
ACS Nano ; 18(21): 13696-13713, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751164

ABSTRACT

The potential of human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hucMSC-EVs) in wound healing is promising, yet a comprehensive understanding of how fibroblasts and keratinocytes respond to this treatment remains limited. This study utilizes single-cell RNA sequencing (scRNA-seq) to investigate the impact of hucMSC-EVs on the cutaneous wound microenvironment in mice. Through rigorous single-cell analyses, we unveil the emergence of hucMSC-EV-induced hematopoietic fibroblasts and MMP13+ fibroblasts. Notably, MMP13+ fibroblasts exhibit fetal-like expressions of MMP13, MMP9, and HAS1, accompanied by heightened migrasome activity. Activation of MMP13+ fibroblasts is orchestrated by a distinctive PIEZO1-calcium-HIF1α-VEGF-MMP13 pathway, validated through murine models and dermal fibroblast assays. Organotypic culture assays further affirm that these activated fibroblasts induce keratinocyte migration via MMP13-LRP1 interactions. This study significantly contributes to our understanding of fibroblast heterogeneities as well as intercellular interactions in wound healing and identifies hucMSC-EV-induced hematopoietic fibroblasts as potential targets for reprogramming. The therapeutic targets presented by these fibroblasts offer exciting prospects for advancing wound healing strategies.


Subject(s)
Extracellular Vesicles , Fibroblasts , Mesenchymal Stem Cells , Single-Cell Analysis , Umbilical Cord , Wound Healing , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Umbilical Cord/cytology , Umbilical Cord/metabolism , Animals , Mice , Fibroblasts/metabolism , Sequence Analysis, RNA , Cells, Cultured , Cell Movement , Matrix Metalloproteinase 13/metabolism , Fetus
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167206, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718848

ABSTRACT

The long noncoding RNA growth arrest-specific 5 (lncRNA Gas5) is implicated in various kidney diseases. In this study, we investigated the lncRNA Gas5 expression profile and its critical role as a potential biomarker in the progression of chronic kidney disease. Subsequently, we assessed the effect of lncRNA Gas5 deletion on renal fibrosis induced by unilateral ureteral obstruction (UUO). The results indicated that loss of lncRNA Gas5 exacerbates UUO-induced renal injury and extracellular matrix deposition. Notably, the deletion of lncRNA Gas5 had a similar effect on control mice. The fibrogenic phenotype observed in mice lacking lncRNA Gas5 correlates with peroxisome proliferator-activated receptor (PPAR) signaling pathway activation and aberrant cytokine and chemokine reprogramming. Single-cell RNA sequencing analysis revealed key transcriptomic features of fibroblasts after Gas5 deletion, revealing heterogeneous cellular states suggestive of a propensity for renal fibrosis. Our findings indicate that lncRNA Gas5 regulates the differentiation and activation of immune cells and the transcription of key genes in the PPAR signaling pathway. These data offer novel insights into the involvement of lncRNA Gas5 in renal fibrosis, potentially paving the way for innovative diagnostic and therapeutic targets.

9.
Bioresour Technol ; 403: 130892, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795922

ABSTRACT

Chitosan (CTS) serves as an excellent natural flocculant in wastewater purification and sludge conditioning, but its potential impact on anaerobic fermentation of waste-activated sludge is unclear. The current study investigated the role of CTS in short-chain fatty acids (SCFAs) generation via sludge alkaline anaerobic fermentation. The results showed a drastic reduction in SCFA production with CTS, showing a maximum inhibition of 33 % at 6 mg/g of total suspended solids. CTS hindered sludge solubilization through flocculation, and acted as a humus precursor, promoting humus formation, and consequently reduced the amount of available substrates. Further, CTS promoted free ammonia production, posing a challenge to enzymes and cell viability. Additionally, CTS increased the population of Rikenellaceae sp. and weakened the dominance of hydrolyzing and acidifying bacteria. This study deepens the understanding of the potential impact of CTS on anaerobic fermentation and provides a theoretical basis for reducing the risk of polymeric flocculants.

10.
Aging Clin Exp Res ; 36(1): 115, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780859

ABSTRACT

BACKGROUND: Pain is linked to disability, but how multisite musculoskeletal pain leads to disability over time is not well elaborated. OBJECTIVE: To examine the associations of multisite musculoskeletal pain with disability among a nationally representative cohort. DESIGN: We used data from the National Health and Aging Trends Study (NHATS) 2015-22. Disability was assessed by basic activities of daily living (ADL) and instrumental activities of daily living (IADL). PARTICIPANTS: A total of 5557 individuals with multisite musculoskeletal pain dwelling in the community were included in this study. METHODS: Group-based trajectory models were applied to identify distinct profiles of disability in ADL and IADL. Design-based logistic regressions were used to examine associations among multisite musculoskeletal pain, disability, and dual trajectory group memberships, adjusted for sociodemographic, health status, behavioral, and mental characteristics. RESULTS: Persons who experienced multisite musculoskeletal pain were at higher risk of disability in ADL and IADL. We identified five heterogeneous disability trajectories and named them based on baseline levels and rates of increase over time. Approximately, 52.42% of older adults with multisite musculoskeletal pain were in trajectories with ADL and IADL declines, and 33.60% experienced a rapid decline. Multisite musculoskeletal pain was associated with elevated relative risk for the adverse disability trajectories, which generally increases with multisite musculoskeletal pain frequency and number of sites. CONCLUSIONS: Persons with multisite musculoskeletal pain had a higher risk of disability. It is essential to adopt effective pain management strategies to maintain the independent living ability of older adults and to realize active aging.


Subject(s)
Activities of Daily Living , Disabled Persons , Independent Living , Musculoskeletal Pain , Humans , Musculoskeletal Pain/epidemiology , Musculoskeletal Pain/physiopathology , Male , Aged , Female , Aged, 80 and over , Disability Evaluation
11.
J Hazard Mater ; 470: 134124, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38565020

ABSTRACT

Microplastics are known to negatively affect anaerobic digestion (AD) of waste activated sludge. However, whether thermal hydrolysis (TH) pretreatment alters the impact of microplastics on sludge AD remains unknown. Herein, the effect of TH on the impact of polyethylene (PE) microplastics in sludge AD was investigated. The results showed that the inhibition of methane production by PE at 100 particles/g total solids (TS) was reduced by 31.4% from 12.1% to 8.3% after TH at 170 °C for 30 min. Mechanism analysis indicated TH reduced the potential for reactive oxygen species production induced by PE, resulting in a 29.1 ± 5.5% reduction in cell viability loss. In addition, additive leaching increased as a result of rapid aging of PE microplastics by TH. Acetyl tri-n-butyl citrate (ATBC) release from PE with 10 and 100 particles/g TS increased 11.5-fold and 8.6-fold after TH to 68.2 ± 5.5 µg/L and 124.0 ± 5.1 µg/L, respectively. ATBC at 124.0 µg/L increased methane production by 21.4%. The released ATBC enriched SBR1031 and Euryarchaeota, which facilitate the degradation of proteins and promote methane production. This study reveals the overestimated impact of PE microplastics in sludge AD and provides new insights into the PE microplastics-induced impact in practical sludge treatment and anaerobic biological processes.


Subject(s)
Methane , Microplastics , Polyethylene , Sewage , Anaerobiosis , Microplastics/toxicity , Hydrolysis , Polyethylene/toxicity , Methane/metabolism , Waste Disposal, Fluid/methods , Hot Temperature , Water Pollutants, Chemical/toxicity , Bioreactors
12.
J Glob Health ; 14: 04077, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38638097

ABSTRACT

Background: The current study uniquely focuses on the global incidence and temporal trends of acute hepatitis C (AHC) and hepatitis C virus (HCV)-related cirrhosis among women of reproductive age (15-49 years) from 1990-2019. The risk of vertical transmission and adverse perinatal outcomes associated with HCV infection underscores the importance of prioritising these women in HCV prevention efforts. Methods: Leveraging the Global Burden of Disease 2019 data, we calculated age-standardised incidence rates (ASIR) and assessed temporal trends via the average annual percent change from joinpoint regression. The age-period-cohort model was employed to understand further the effects of age, period, and birth cohort. Results: Over the 30 years, global incidences of AHC and HCV-related cirrhosis in reproductive-age women increased by 46.45 and 72.74%, respectively. The ASIR of AHC was highest in low sociodemographic index regions but showed a declining trend. Conversely, the ASIR of HCV-related cirrhosis displayed unfavourable trends in low, low-middle, and high sociodemographic index regions. Special attention is necessary for sub-Saharan Africa, high-income North America, Eastern Europe, and Central Asia due to their high incidence rates or increasing trends of AHC and HCV-related cirrhosis. Notably, the age-period-cohort model suggests a recent resurgence in AHC and HCV-related cirrhosis risk. Conclusions: The current study is the first to thoroughly evaluate the trends of AHC and HCV-related cirrhosis among reproductive-age women, shedding light on previously unexplored aspects of HCV epidemiology. Our findings identify critical areas where health care systems must adapt to the changing dynamics of HCV infection. The detailed stratification by region and nation further enables the development of localised prevention and treatment strategies.


Subject(s)
Hepacivirus , Hepatitis C , Pregnancy , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Global Burden of Disease , Hepatitis C/complications , Hepatitis C/epidemiology , Liver Cirrhosis/epidemiology , Liver Cirrhosis/etiology , Incidence , Global Health
13.
Brain Res Bull ; 211: 110937, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38570077

ABSTRACT

Adult survivors of childhood brain tumors often present with cognitive deficits that affect their quality of life. Studying brain structure and function in brain tumor survivors can help understand the underlying mechanisms of their cognitive deficits to improve long-term prognosis of these patients. This study analyzed voxel-based morphometry (VBM) derived from T1-weighted MRI and the amplitude of low-frequency fluctuation (ALFF) from resting-state functional magnetic resonance imaging (rs-fMRI) to examine the structural and functional alterations in 35 brain tumor survivors using 35 matching healthy individuals as controls. Compared with healthy controls, brain tumor survivors had decreased gray matter volumes (GMV) in the thalamus and increased GMV in the superior frontal gyrus. Functionally, brain tumor survivors had lower ALFF values in the inferior temporal gyrus and medial prefrontal area and higher ALFF values in the thalamus. Importantly, we found concurrent but negatively correlated structural and functional alterations in the thalamus based on observed significant differences in GMV and ALFF values. These findings on concurrent brain structural and functional alterations provide new insights towards a better understanding of the cognitive deficits in brain tumor survivors.


Subject(s)
Brain Neoplasms , Cancer Survivors , Magnetic Resonance Imaging , Thalamus , Humans , Male , Female , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Thalamus/diagnostic imaging , Thalamus/pathology , Adult , Young Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Adolescent , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Multimodal Imaging/methods , Child , Survivors
14.
Cancer Lett ; 590: 216861, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38583649

ABSTRACT

Immunotherapy represented by programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) monoclonal antibodies has led tumor treatment into a new era. However, the low overall response rate and high incidence of drug resistance largely damage the clinical benefits of existing immune checkpoint therapies. Recent studies correlate the response to PD-1/PD-L1 blockade with PD-L1 expression levels in tumor cells. Hence, identifying molecular targets and pathways controlling PD-L1 protein expression and stability in tumor cells is a major priority. In this study, we performed a Stress and Proteostasis CRISPR interference screening to identify PD-L1 positive modulators. Here, we identified TRAF6 as a critical regulator of PD-L1 in melanoma cells. As a non-conventional E3 ubiquitin ligase, TRAF6 is inclined to catalyze the synthesis and linkage of lysine-63 (K63) ubiquitin which is related to the stabilization of substrate proteins. Our results showed that suppression of TRAF6 expression down-regulates PD-L1 expression on the membrane surface of melanoma cells. We then used in vitro and in vivo assays to investigate the biological function and mechanism of TRAF6 and its downstream YAP1/TFCP2 signaling in melanoma. TRAF6 stabilizes YAP1 by K63 poly-ubiquitination modification, subsequently promoting the formation of YAP1/TFCP2 transcriptional complex and PD-L1 transcription. Inhibition of TRAF6 by Bortezomib enhanced cytolytic activity of CD8+ T cells by reduction of endogenous PD-L1. Notably, Bortezomib enhances anti-tumor immunity to an extent comparable to anti-PD-1 therapies with no obvious toxicity. Our findings reveal the potential of inhibiting TRAF6 to stimulate internal anti-tumor immunological effect for TRAF6-PD-L1 overexpressing cancers.


Subject(s)
Adaptor Proteins, Signal Transducing , B7-H1 Antigen , Melanoma , Signal Transduction , TNF Receptor-Associated Factor 6 , Transcription Factors , YAP-Signaling Proteins , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Melanoma/metabolism , Melanoma/genetics , Melanoma/drug therapy , Melanoma/pathology , Melanoma/immunology , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Mice , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Gene Expression Regulation, Neoplastic , Ubiquitination , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
15.
J Environ Manage ; 359: 120980, 2024 May.
Article in English | MEDLINE | ID: mdl-38669887

ABSTRACT

Total solids (TS) content may provide a regulatory strategy for optimizing anaerobic digestion enhanced by high-temperature thermal hydrolysis, but the role of TS content is not yet clear. In this study, the effect of TS content on the high-temperature thermal hydrolysis and anaerobic digestion of sludge and its mechanism were investigated. The results showed that increasing the TS content from 2% to 8% increased the sludge solubility and methane production potential, reaching peak values of 26.6% and 336 ± 6 mL/g volatile solids (VS), respectively. With a further increase in TS content to 12%, the strong Maillard reaction increased the aromaticity and structural stability of extracellular polymer substances, decreasing sludge solubility to 18.6%. Furthermore, the decrease in sludge biodegradability and the formation of inhibitory by-products resulted in a reduction in methane production to 272 ± 4 mL/g VS. This article provides a new perspective to understand the role of TS content in the thermal hydrolysis of sludge and a novel approach to regulate the Maillard reaction.


Subject(s)
Methane , Sewage , Sewage/chemistry , Hydrolysis , Anaerobiosis , Methane/chemistry , Methane/metabolism , Biodegradation, Environmental , Waste Disposal, Fluid/methods , Hot Temperature
16.
Heliyon ; 10(7): e28933, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38633636

ABSTRACT

Exposure to ambient fine particulate matter (PM2.5) has a great impact on human body's immune system, but the correlation between PM2.5 and ankylosing spondylitis has not yet been clarified. We extracted 58,600 outpatient visits for ankylosing spondylitis from the Beijing Medical Claim Data for Employees database from 2010 to 2017. The percentage of outpatient visits following PM2.5 concentrations was estimated using generalized additive models with Poisson connections. Increase by 10 µ g/m3, PM2.5 is associated with daily outpatient visits for ankylosing spondylitis. In this test, the average concentration of PM2.5 was 86.8 ± 74.3 µ g/m3. For every 10 µg/m3 increase in PM2.5 concentration, there was a 0.34% (95% CI, 0.26-0.42%) increase in the risk of patients who visited the doctor on the same day. Females and younger patients were most susceptible to the impact of PM2.5 exposure (P<0.05). This study revealed the relationship between exposure to PM2.5 and ankylosing spondylitis, and future research can further confirm this finding and explore the potential mechanisms.

17.
Diabetes Metab Syndr Obes ; 17: 1321-1333, 2024.
Article in English | MEDLINE | ID: mdl-38525162

ABSTRACT

Purpose: To investigate the risk factors associated with preeclampsia in hyperglycemic pregnancies and develop a predictive model based on routine pregnancy care. Patients and Methods: The retrospective collection of clinical data was performed on 951 pregnant women with hyperglycemia, including those diagnosed with diabetes in pregnancy (DIP) and gestational diabetes mellitus (GDM), who delivered after 34 weeks of gestation at the Maternal and Child Health Hospital Affiliated to Anhui Medical University between January 2017 and December 2019. Observation indicators included liver and kidney function factors testing at 24-29+6 weeks gestation, maternal age, and basal blood pressure. The indicators were screened univariately, and the "rms" package in R language was applied to explore the factors associated with PE in HIP pregnancy by stepwise regression. Multivariable logistic regression analysis was used to develop the prediction model. Based on the above results, a nomogram was constructed to predict the risk of PE occurrence in pregnant women with HIP. Then, the model was evaluated from three aspects: discrimination, calibration, and clinical utility. The internal validation was performed using the bootstrap procedure. Results: Multivariate logistic regression analysis showed that cystatin C, uric acid, glutamyl aminotransferase, blood urea nitrogen, and basal systolic blood pressure as predictors of PE in pregnancy with HIP. The predictive model yielded an area under curve (AUC) value of 0.8031 (95% CI: 0.7383-0.8679), with an optimal threshold of 0.0805, at which point the sensitivity was 0.8307 and specificity of 0.6604. Hosmer-Lemeshow test values were P = 0.3736, Brier score value was 0.0461. After 1000 Bootstrap re-samplings for internal validation, the AUC was 0.7886, the Brier score was 0.0478 and the predicted probability of the calibration curve was similar to the actual probability. A nomogram was constructed based on the above to visualize the model. Conclusion: This study developed a model for predicting PE in pregnant women with HIP, achieving high predictive performance of PE risk through the information of routine pregnancy care.

18.
Genes (Basel) ; 15(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540418

ABSTRACT

Glaesserella parasuis (G. parasuis) causes systemic infection in pigs, but its effects on skeletal muscle and underlying mechanisms are poorly understood. We investigated G. parasuis infection in colostrum-deprived piglets, observing decreased daily weight gain and upregulation of inflammatory factors in skeletal muscle. Muscle fiber area and diameter were significantly reduced in the treated group (n = 3) compared to the control group (n = 3), accompanied by increased expression of FOXO1, FBXO32, TRIM63, CTSL, and BNIP3. Based on mRNA and microRNA (miRNA) sequencing, we identified 1642 differentially expressed (DE) mRNAs and 19 known DE miRNAs in skeletal muscle tissues between the two groups. We predicted target genes with opposite expression patterns to the 19 miRNAs and found significant enrichment and activation of the FoxO signaling pathway. We found that the upregulated core effectors FOXO1 and FOXO4 were targeted by downregulated ssc-miR-486, ssc-miR-370, ssc-miR-615, and ssc-miR-224. Further investigation showed that their downstream upregulated genes involved in protein degradation were also targeted by the downregulated ssc-miR-370, ssc-miR-615, ssc-miR-194a-5p, and ssc-miR-194b-5p. These findings suggest that G. parasuis infection causes skeletal muscle atrophy in piglets through accelerated protein degradation mediated by the "miRNAs-FOXO1/4" axis, while further research is necessary to validate the regulatory relationships. Our results provide new insights into the understanding of systemic inflammation growth mechanisms caused by G. parasuis and the role of miRNAs in bacterial infection pathogenesis.


Subject(s)
MicroRNAs , Swine/genetics , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Gene Expression Profiling , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism
19.
Biomolecules ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38540713

ABSTRACT

The impaired invasion ability of trophoblast cells is related to the occurrence of preeclampsia (PE). We previously found that pregnancy-specific beta-1-glycoprotein 1 (PSG1) levels were decreased in the serum of individuals with early-onset preeclampsia (EOPE). This study investigated the effect of PSG1 on Orai1-mediated store-operated calcium entry (SOCE) and the Akt signaling pathway in human trophoblast cell migration. An enzyme-linked immunosorbent assay (ELISA) was used to determine the level of PSG1 in the serum of pregnant women with EOPE. The effects of PSG1 on trophoblast proliferation and migration were examined using cell counting kit-8 (CCK8) and wound healing experiments, respectively. The expression levels of Orai1, Akt, and phosphorylated Akt (p-Akt) were determined through Western blotting. The results confirmed that the serum PSG1 levels were lower in EOPE women than in healthy pregnant women. The PSG1 treatment upregulated the protein expression of Orai1 and p-Akt. The selective inhibitor of Orai1 (MRS1845) weakened the migration-promoting effect mediated by PSG1 via suppressing the Akt signaling pathway. Our findings revealed one of the mechanisms possibly involved in EOPE pathophysiology, which was that downregulated PSG1 may reduce the Orai1/Akt signaling pathway, thereby inhibiting trophoblast migration. PSG1 may serve as a potential target for the treatment and diagnosis of EOPE.


Subject(s)
Eosine Yellowish-(YS)/analogs & derivatives , Phosphatidylethanolamines , Pre-Eclampsia , Proto-Oncogene Proteins c-akt , Female , Pregnancy , Humans , Proto-Oncogene Proteins c-akt/metabolism , Pre-Eclampsia/metabolism , Signal Transduction/physiology , Transcription Factors , Cell Movement/physiology , Glycoproteins , Cell Proliferation/physiology
20.
Int J Neurosci ; : 1-8, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38512133

ABSTRACT

OBJECTIVE: This study focuses on exploring the efficacy observation, complications and nursing aspects of using enteral nutrition suspension in patients with acute ischemic stroke. METHODS: This study retrospectively analyzed clinical data from 188 patients with acute ischemic stroke treated in the Neurology Department of our hospital from October 2022 to September 2023. Patients who received intermittent enteral nutrition and nursing interventions were included in the control group (n=96), while patients who received continuous enteral nutrition and nursing interventions were included in the treatment group (n=92). Relevant indicators data changes before and after treatment were recorded for each patient, along with the occurrence of complications in both groups, and statistical analysis was conducted. RESULTS: The treatment group had fewer days in the ICU and total hospitalization days compared to the control group, with p < .05. Patients in the treatment group had higher levels of serum albumin and serum prealbumin than those in the control group, with p < .05. The occurrence of abdominal pain, diarrhea, constipation, bloating and acid reflux in the treatment group was lower than in the control group, with p < .05. There was no significant difference in the occurrence of adverse outcomes at discharge, death at discharge, cerebral hemorrhage, lung infection and gastrointestinal bleeding between the two groups (p > .05). CONCLUSION: The application of enteral nutrition suspension in patients with acute ischemic stroke effectively provides the necessary nutrients, maintains nutritional balance, promotes tissue repair and recovery and reduces the length of hospital stay.

SELECTION OF CITATIONS
SEARCH DETAIL
...