Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 635
Filter
1.
Plant Commun ; : 100939, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725245

ABSTRACT

Plant jasmonoyl-L-isoleucine (JA-Ile) is a major defense signal against insect feeding, but whether or how insect salivary effectors suppress JA-Ile synthesis and thus facilitate viral transmission in plant phloem remains elusive. Insect carboxylesterases (CarEs) are the third major family of detoxification enzymes. Here, we identify a new leafhopper CarE10 that specifically expressed in salivary glands and is secreted into rice phloem as the saliva component. Leafhopper CarE10 directly binds and promotes rice Jasmonate resistant 1 (JAR1) degradation by the proteasome system. Moreover, the direct association of CarE10 with JAR1 obviously impairs JAR1 enzyme activity for JA conversion to JA-Ile in in-vitro JA-Ile synthesis system. A devastating rice reovirus activates and promotes co-secretion of virions and CarE10 by virus-induced vesicles into saliva-stored salivary cavities of leafhopper vectors and ultimately into rice phloem to establish initial infection. Furthermore, virus-mediated increase of CarE10 secretion or overexpression of CarE10 in transgenic rice plants causes the reduced levels of JAR1 and thus suppresses JA-Ile synthesis, thereby promoting host attractiveness to insect vectors and facilitating initial viral transmission. Our findings provide insights into how insect salivary protein CarE10 suppresses host JA-Ile synthesis to benefit initial virus transmission in rice phloem.

2.
ACS Biomater Sci Eng ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716490

ABSTRACT

The performance of dental resin composites is crucially influenced by the sizes and distributions of inorganic fillers. Despite the investigation of a variety of functional particles, glass fillers and nanoscale silica are still the predominant types in dental materials. However, achieving an overall improvement in the performance of resin composites through the optimization of their formulations remains a challenge. This work introduced a "dense" microhybrid filler system with 85 wt % filler loading, leading to the preparation of self-developed resin composites (SRCs). Comparative evaluations of these five SRCs against four commercial products were performed, including mechanical property, polymerization conversion, and shrinkage, along with water sorption and solubility and wear resistance. The results showed that among all SRC groups, SRC3 demonstrated superior mechanical performance, high polymerization conversion, reduced shrinkage, low water absorption and solubility, and acceptable wear resistance. In contrast to commercial products, this optimal SRC3 material was comparable to Z350 XT in flexural and diametral tensile strength and better in flexural modulus and surface hardness. The use of a "dense" microhybrid filler system in the development of resin composites provides a balance between physicochemical property and wear resistance, which may be a promising strategy for the development of composite products.

3.
Small ; : e2402410, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766970

ABSTRACT

Lead-free halide perovskites as a new kind of potential candidate for photocatalytic organic synthesis have attracted much attention recently. The rational heterojunction construction is regarded as an efficient strategy to delicately regulate their catalytic performances. Herein, a semi-conductive covalent organic framework (COF) nanosheet, C4N, is employed as the functional component to construct Cs2AgBiCl6/C4N (CABC/C4N) heterojunction. It is found that the C4N nanosheets with rich surface functional groups can serve as heterogeneous nucleation sites to manipulate the growth of CABC nanocrystals and afford close contact between each other, therefore facilitate the transfer and spatial separation of photogenerated charge carriers, as verified by in situ X-ray photoelectronic spectroscopy and Kelvin probe force microscopy. Moreover, the oxygen affinity of C4N endows the heterojunctions with outstanding aerobic reactivity, thus improving the photocatalytic performance largely. The optimal CABC/C4N heterojunction delivers a thioanisole conversion efficiency of 100% after 6 h, which is 2.2 and 7.7-fold of that of CABC and C4N. This work provides a new ideal for the design and application of lead-free perovskite heterojunction photocatalysts for organic reactions.

4.
Nat Commun ; 15(1): 3700, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697989

ABSTRACT

Detecting early-stage esophageal squamous cell carcinoma (ESCC) and precancerous lesions is critical for improving survival. Here, we conduct whole-genome bisulfite sequencing (WGBS) on 460 cfDNA samples from patients with non-metastatic ESCC or precancerous lesions and matched healthy controls. We develop an expanded multimodal analysis (EMMA) framework to simultaneously identify cfDNA methylation, copy number variants (CNVs), and fragmentation markers in cfDNA WGBS data. cfDNA methylation markers are the earliest and most sensitive, detectable in 70% of ESCCs and 50% of precancerous lesions, and associated with molecular subtypes and tumor microenvironments. CNVs and fragmentation features show high specificity but are linked to late-stage disease. EMMA significantly improves detection rates, increasing AUCs from 0.90 to 0.99, and detects 87% of ESCCs and 62% of precancerous lesions with >95% specificity in validation cohorts. Our findings demonstrate the potential of multimodal analysis of cfDNA methylome for early detection and monitoring of molecular characteristics in ESCC.


Subject(s)
Biomarkers, Tumor , DNA Copy Number Variations , DNA Methylation , Early Detection of Cancer , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Precancerous Conditions , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/diagnosis , Precancerous Conditions/genetics , Precancerous Conditions/diagnosis , Precancerous Conditions/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Male , Early Detection of Cancer/methods , Female , Biomarkers, Tumor/genetics , Middle Aged , Aged , Epigenome , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Whole Genome Sequencing/methods , Tumor Microenvironment/genetics
5.
Chem Commun (Camb) ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757204

ABSTRACT

Highly pure Rh2P nanoparticles on N,P-codoped carbon were synthesized by a simple "mix-and-pyrolyze" method using one kind of low-cost nucleotide as the carbon, nitrogen and phosphorus source, which exhibits excellent bifunctional activity for the hydrogen reduction and hydrazine oxidation reactions, achieving energy-efficient hydrogen production.

6.
Chemistry ; : e202400276, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757422

ABSTRACT

A hydrophobic Ni-PTFE modified electrode has been prepared by constant current and cathodic electroplating with a nickel sheet as substrate in a PTFE suspension. Then the Ni-PTFE modified electrode was used for electroreduction from aromatic amide to diarylimide. The electrochemical characterizations such as cyclic voltammogram, EIS, polarization curves, and electrode stability have been carried out by electrochemical workstation. The structure of the electroreduction product diarylimide was characterized by 1HNMR, FT-IR, MS(Mass Spectrum), and EA(Elemental Analyzer). Based on the hydrophobicity of the electrode, an approach suggested that the phenyl ketone radical may be formed by electroreductive deamination at the cathode. With the construction of C-N bond by the radical coupling, the electrocatalytic reduction may be comprised of a one-electron process including an ECC (Electrochemical-Chemical-Chemical) process. The electroreduction of aromatic amide to diarylimide may be controlled by both charge migration and concentration polarization. Electrocatalytic reduction of aromatic amides on Ni-PTFE-modified electrodes is all well conversion ratio.

7.
J Transl Med ; 22(1): 475, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764033

ABSTRACT

PURPOSE: To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS: The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS: OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS: OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.


Subject(s)
Autophagy , Cell Polarity , Exosomes , Macrophages , Mice, Inbred C57BL , MicroRNAs , Non-alcoholic Fatty Liver Disease , Sirtuin 3 , Sleep Apnea, Obstructive , Exosomes/metabolism , Animals , Sirtuin 3/metabolism , Sirtuin 3/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Macrophages/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Humans , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Male , Mice , Hepatocytes/metabolism , Hepatocytes/pathology , Inflammasomes/metabolism , Base Sequence , Liver/pathology , Liver/metabolism , AMP-Activated Protein Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
8.
Heliyon ; 10(8): e29572, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38699748

ABSTRACT

Sepsis is a life-threatening illness caused by the dysregulated host response to infection. Nevertheless, our current knowledge of the microbial landscape in the blood of septic patients is still limited. Next-generation sequencing (NGS) is a sensitive method to quantitatively characterize microbiomes at various sites of the human body. In this study, we analyzed the blood microbial DNA of 22 adult patients with sepsis and 3 healthy subjects. The presence of non-human DNA was identified in both healthy and septic subjects. Septic patients had a markedly altered microbial DNA profile compared to healthy subjects over α- and ß-diversity. Unexpectedly, the patients could be further divided into two subgroups (C1 and C2) based on ß-diversity analysis. C1 patients showed much higher bacteria, viruses, fungi, and archaea abundance, and a higher level of α-diversity (Chao1, Observed and Shannon index) than both C2 patients and healthy subjects. The most striking difference was seen in the case of Streptomyces violaceusniger, Phenylobacterium sp. HYN0004, Caulobacter flavus, Streptomyces sp. 11-1-2, and Phenylobacterium zucineum, the abundance of which was the highest in the C1 group. Notably, C1 patients had a significantly poorer outcome than C2 patients. Moreover, by analyzing the patterns of microbe-microbe interactions in healthy and septic subjects, we revealed that C1 and C2 patients exhibited distinct co-occurrence and co-exclusion relationships. Together, our study uncovered two distinct microbial signatures in the blood of septic patients. Compositional and ecological analysis of blood microbial DNA may thus be useful in predicting mortality of septic patients.

9.
Proc Natl Acad Sci U S A ; 121(22): e2402911121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38776366

ABSTRACT

Leaf yellowing is a well-known phenotype that attracts phloem-feeding insects. However, it remains unclear how insect-vectored plant pathogens induce host leaf yellowing to facilitate their own transmission by insect vectors. Here, we report that an effector protein secreted by rice orange leaf phytoplasma (ROLP) inhibits chlorophyll biosynthesis and induces leaf yellowing to attract leafhopper vectors, thereby presumably promoting pathogen transmission. This effector, designated secreted ROLP protein 1 (SRP1), first secreted into rice phloem by ROLP, was subsequently translocated to chloroplasts by interacting with the chloroplastic glutamine synthetase (GS2). The direct interaction between SRP1 and GS2 disrupts the decamer formation of the GS2 holoenzyme, attenuating its enzymatic activity, thereby suppressing the synthesis of chlorophyll precursors glutamate and glutamine. Transgenic expression of SRP1 in rice plants decreased GS2 activity and chlorophyll precursor accumulation, finally inducing leaf yellowing. This process is correlated with the previous evidence that the knockout of GS2 expression in rice plants causes a similar yellow chlorosis phenotype. Consistently, these yellowing leaves attracted higher numbers of leafhopper vectors, caused the vectors to probe more frequently, and presumably facilitate more efficient phytoplasma transmission. Together, these results uncover the mechanism used by phytoplasmas to manipulate the leaf color of infected plants for the purpose of enhancing attractiveness to insect vectors.


Subject(s)
Chloroplasts , Glutamate-Ammonia Ligase , Hemiptera , Insect Vectors , Oryza , Phytoplasma , Plant Leaves , Animals , Hemiptera/microbiology , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/genetics , Phytoplasma/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Oryza/microbiology , Oryza/genetics , Insect Vectors/microbiology , Chloroplasts/metabolism , Plant Diseases/microbiology , Chlorophyll/metabolism , Plants, Genetically Modified , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
10.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793560

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family, represents a persistent menace to the global pig industry, causing reproductive failure and respiratory disease in pigs. In this study, we delved into the role of histone deacetylases (HDAC2) during PRRSV infection. Our findings revealed that HDAC2 expression is downregulated upon PRRSV infection. Notably, suppressing HDAC2 activity through specific small interfering RNA led to an increase in virus production, whereas overexpressing HDAC2 effectively inhibited PRRSV replication by boosting the expression of IFN-regulated antiviral molecules. Furthermore, we identified the virus's nonstructural protein 11 (nsp11) as a key player in reducing HDAC2 levels. Mutagenic analyses of PRRSV nsp11 revealed that its antagonistic effect on the antiviral activity of HDAC2 is dependent on its endonuclease activity. In summary, our research uncovered a novel immune evasion mechanism employed by PRRSV, providing crucial insights into the pathogenesis of this virus and guiding the development of innovative prevention strategies against PRRSV infection.


Subject(s)
Endoribonucleases , Histone Deacetylase 2 , Immune Evasion , Immunity, Innate , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Virus Replication , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Endoribonucleases/metabolism , Endoribonucleases/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Cell Line , Humans
11.
Environ Sci Pollut Res Int ; 31(24): 34962-34980, 2024 May.
Article in English | MEDLINE | ID: mdl-38717702

ABSTRACT

Land use transition and its impact on ecosystem service value (ESV) are the foundation for optimizing the layout of territorial space and ecological civilization construction. With the acceleration of industrialization and urbanization, the area of construction land expands in China. To accurately estimate the ESV in industrial counties, the impact of construction land on the ecological environment should be fully considered. This paper took Gangcheng District, Jinan City, a steel base in the Shandong Province of China as an example, then the value coefficients of "three wastes" factors (waste gas, wastewater, and waste) were introduced, and an improved calculation method of ESV was put forward for industrial counties in combination with remote sensing and land use data. Finally, the land use transition and its ESV effect in typical industrial counties were analyzed using geo-informatic Tupu and grid method. The results showed that the most important land use transitions were from grassland and forestland to cultivated land, from cultivated land and forestland to construction land in 1990-2010, and from cultivated land transformed to forestland in 2010-2021. The types of land use transition were mainly repetitive and continuous. The ESV first decreased and then increased, with a slight overall decline for more than 30 years, showing a spatial distribution characteristic of "low in the south-central and high around." Land use transition had the impact on ESV with the negative contribution rate of 68.28% in 1990-2000 and 73.16% in 2000-2010, mainly caused by the transition from forestland and grassland to cultivated land and construction land, and the positive contribution rate of 81.72% in 2010-2021, mainly caused by the transition from cultivated land to forestland. Compared with the ESV calculation method without introducing the "three wastes" factor and Xie Gaodi's method, the improved method in this paper considered the inevitable impact of construction land on ESV in industrial counties and made the ESV calculated more accurate according to the regional nature. This paper cannot only enrich the theories and technical methods of land use transition and its effects, and provide a case reference for similar industrial counties, but also provide data and decision-making support for the spatial layout and ecological protection in the study area.


Subject(s)
Ecosystem , China , Conservation of Natural Resources , Urbanization , Forests , Environmental Monitoring
12.
Commun Biol ; 7(1): 492, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654054

ABSTRACT

A correlation exists between obstructive sleep apnoea (OSA) and the severity of metabolic dysfunction-associated steatotic liver disease (MASLD), OSA can induce more severe MASLD. However, the underlying regulatory mechanism between the two is unclear. To this end, this study explored the role and possible molecular mechanisms of adipocyte-derived exosomes under OSA in aggravating MASLD. Through sequencing technology, miR-455-3p was identified as a co-differentially expressed miRNA between the MASLD + OSA and Control groups and between the MASLD + OSA and MASLD groups. Upregulation of TCONS-00039830 and Smad2 and downregulation of miR-455-3p in the MASLD and MASLD + OSA groups were validated in vivo and in vitro. TCONS-00039830, as a differentially expressed LncRNA in exosomes found in the sequencing results, transfection notably downregulated miR-455-3p and upregulated Smad2 in hepatocytes. TCONS_00039830 overexpression increased fat, triglyceride and cholesterol levels, while miR-455-3p overexpression decreased these levels. Furthermore, exosome administration promoted the accumulation of fat, triglyceride and cholesterol, upregulated TCONS_00039830 and Smad2, and downregulated miR-455-3p. Overexpression of miR-455-3p reversed the increased fat accumulation and upregulated TCONS_00039830 and Smad2. In conclusion, OSA-derived exosomes promoted hepatocyte steatosis by regulating TCONS_00039830/miR-455-3p/Smad2 axis, thereby aggravating liver damage in MASLD.


Subject(s)
Exosomes , MicroRNAs , Sleep Apnea, Obstructive , Smad2 Protein , Animals , Exosomes/metabolism , Exosomes/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Smad2 Protein/metabolism , Smad2 Protein/genetics , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/complications , Male , Rats , Adipocytes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Rats, Sprague-Dawley , Humans , Hepatocytes/metabolism , Disease Models, Animal
13.
J Radiat Res ; 65(3): 350-359, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38650477

ABSTRACT

Using radiomics to predict O6-methylguanine-DNA methyltransferase promoter methylation status in patients with newly diagnosed glioblastoma and compare the performances of different MRI sequences. Preoperative MRI scans from 215 patients were included in this retrospective study. After image preprocessing and feature extraction, two kinds of machine-learning models were established and compared for their performances. One kind was established using all MRI sequences (T1-weighted image, T2-weighted image, contrast enhancement, fluid-attenuated inversion recovery, DWI_b_high, DWI_b_low and apparent diffusion coefficient), and the other kind was based on single MRI sequence as listed above. For the machine-learning model based on all sequences, a total of seven radiomic features were selected with the Maximum Relevance and Minimum Redundancy algorithm. The predictive accuracy was 0.993 and 0.750 in the training and validation sets, respectively, and the area under curves were 1.000 and 0.754 in the two sets, respectively. For the machine-learning model based on single sequence, the numbers of selected features were 8, 10, 10, 13, 9, 7 and 6 for T1-weighted image, T2-weighted image, contrast enhancement, fluid-attenuated inversion recovery, DWI_b_high, DWI_b_low and apparent diffusion coefficient, respectively, with predictive accuracies of 0.797-1.000 and 0.583-0.694 in the training and validation sets, respectively, and the area under curves of 0.874-1.000 and 0.538-0.697 in the two sets, respectively. Specifically, T1-weighted image-based model performed best, while contrast enhancement-based model performed worst in the independent validation set. The machine-learning models based on seven different single MRI sequences performed differently in predicting O6-methylguanine-DNA methyltransferase status in glioblastoma, while the machine-learning model based on the combination of all sequences performed best.


Subject(s)
Brain Neoplasms , DNA Modification Methylases , DNA Repair Enzymes , Glioblastoma , Magnetic Resonance Imaging , Tumor Suppressor Proteins , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Magnetic Resonance Imaging/methods , Female , Male , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Middle Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Adult , Aged , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Machine Learning , DNA Methylation , Retrospective Studies , Young Adult , Radiomics
14.
BMC Public Health ; 24(1): 953, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570765

ABSTRACT

OBJECTIVE: The diagnosis of hidden hearing loss (HHL) in calm state has not yet been determined, while the nutritional status is not involved in its pathogenic risk factors. In utero iron deficiency (ID) may delay auditory neural maturation in infants. We evaluated the association between ID and HHL as well as the modification effect of socioeconomic status (SES) on this association in newborns. STUDY DESIGN: We included 859 mother-newborns from the baseline of this observational northeast cohort. Data on exposure assessment included iron status [maternal hemoglobin (Hb) and neonatal heel prick serum ferritin (SF)] and SES (occupation, education and income). Auditory neural maturation was reflected by auditory brainstem response (ABR) testing and electrocochleography (ECochG). RESULTS: Iron status and SES were independently and jointly associated with the prediction of neonatal HHL by logistic and linear regression model. The mediation effects were performed by Process. ID increased absolute latency wave V, interpeak latency (IPL) III-V, and summting potentials (SP) /action potentials (AP), which were combined as HHL. Low SES showed the highest risk of HHL and the highest levels of related parameters in ID newborns. Moreover, after Corona Virus Disease 2019 (COVID-19) were positive, preschool children who experience ID in neonatal period were more likely to suffer from otitis media with effusion (OME). High SES also showed similar risk effects. CONCLUSION: Both low and high SES may strengthen the risk of ID on neonatal HHL in Northeast China.


Subject(s)
Iron Deficiencies , Mothers , Infant , Female , Child, Preschool , Humans , Infant, Newborn , Hearing Loss, Hidden , Iron , Social Class
15.
Front Microbiol ; 15: 1361860, 2024.
Article in English | MEDLINE | ID: mdl-38585699

ABSTRACT

Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits.

17.
Food Chem X ; 22: 101376, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38665636

ABSTRACT

The aim of this study was to investigate the effect of Ganoderma lucidum fermentation on antioxidant and anti-glycemic activities of Tartary buckwheat. Xylanase, total cellulase (CMCase and FPase) and ß-glucosidase in fermented Tartary buckwheat (FB) increased significantly to 242.06 U/g, 17.99 U/g and 8.67 U/g, respectively. And the polysaccharides, total phenols, flavonoids and triterpenoids, which is increased by 122.19%, 113.70%, 203.74%, and 123.27%, respectively. Metabolite differences between non-fermented Tartary buckwheat (NFB) and FB pointed out that 445 metabolites were substantially different, and were involved in related biological metabolic pathways. There was a considerable rise in the concentrations of hesperidin, xanthotoxol and quercetin 3-O-malonylglucoside by 240.21, 136.94 and 100.77 times (in Fold Change), respectively. The results showed that fermentation significantly increased the antioxidant and anti-glycemic activities of buckwheat. This study demonstrates that the fermentation of Ganoderma lucidum provides a new idea to enhance the health-promoting components and bioactivities of Tartary buckwheat.

18.
Food Chem X ; 21: 101246, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38426073

ABSTRACT

Fatty acids are one of the main sources of flavour in fermented Yu jiaosuan (YJS) in southwest China. Bacilli (50.18 %) and Oxyphotobacteria (32.70 %) were the dominant class. Lactiplantibacillus (40.51 %) and Weissella (20.43 %) were the dominant species in the inoculated fermented group (HY). The peroxide value (ZY: 0.025 g/100 g, HY: 0.016 g/100 g) and lipoxygenase (LOX) (ZY: 5.7654 U/min·g, HY: 3.3856 U/min·g) in the HY group were significantly lower compared with the natural fermentation group (ZY), while acid lipase activity (ZY: 0.3184 U/h·g, HY: 0.7075 U/h·g) and neutral lipase activity (ZY: 12.65443 U/h·g, HY: 20.25142 U/h·g) were significantly higher than the control sample. Totally 40 differential fatty acid metabolites were screened. Arachidonic acid metabolism, unsaturated fatty acid biosynthesis and linoleic acid metabolism were potential metabolic pathways. Seven major bacterial species were closely associated with 15 differential fatty acid. This study contributes to the targeted production of fatty acid functional active substances of YJS.

19.
J Chem Inf Model ; 64(8): 3579-3591, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38545680

ABSTRACT

Exhausted T cells are a key component of immune cells that play a crucial role in the immune response against cancer and influence the efficacy of immunotherapy. Accurate assessment and measurement of T-cell exhaustion (TEX) are critical for understanding the heterogeneity of TEX in the tumor microenvironment (TME) and tailoring individualized immunotherapeutic strategies. In this study, we introduced DeepEpiTEX, a novel computational framework based on deep neural networks, for inferring the developmental hierarchy and functional states of exhausted T cells in the TME from epigenetic profiles. DeepEpiTEX was trained using various modalities of epigenetic data, including DNA methylation data, microRNA expression data, and long non-coding RNA expression data from 30 bulk solid cancer types in the TCGA pan-cancer cohort, and identified five optimal TEX subsets with significant survival differences across the majority of cancer types. The performance of DeepEpiTEX was further evaluated and validated in external multi-center and multi-type cancer cohorts, consistently demonstrating its generalizability and applicability in different experimental settings. In addition, we discovered the potential relationship between TEX subsets identified by DeepEpiTEX and the response to immune checkpoint blockade therapy, indicating that individuals with immune-favorable TEX subsets may experience the greatest benefits. In conclusion, our study sheds light on the role of epigenetic regulation in TEX and provides a powerful and promising tool for categorizing TEX in different disease settings.


Subject(s)
Deep Learning , Epigenesis, Genetic , Neoplasms , T-Lymphocytes , Humans , Neoplasms/genetics , Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , DNA Methylation , MicroRNAs/genetics
20.
PLoS Pathog ; 20(3): e1012129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547321

ABSTRACT

We recently identified two virulence-associated small open reading frames (sORF) of Yersinia pestis, named yp1 and yp2, and null mutants of each individual genes were highly attenuated in virulence. Plague vaccine strain EV76 is known for strong reactogenicity, making it not suitable for use in humans. To improve the immune safety of EV76, three mutant strains of EV76, Δyp1, Δyp2, and Δyp1&yp2 were constructed and their virulence attenuation, immunogenicity, and protective efficacy in mice were evaluated. All mutant strains were attenuated by the subcutaneous (s.c.) route and exhibited more rapid clearance in tissues than the parental strain EV76. Under iron overload conditions, only the mice infected with EV76Δyp1 survived, accompanied by less draining lymph nodes damage than those infected by EV76. Analysis of cytokines secreted by splenocytes of immunized mice found that EV76Δyp2 induced higher secretion of multiple cytokines including TNF-α, IL-2, and IL-12p70 than EV76. On day 42, EV76Δyp2 or EV76Δyp1&yp2 immunized mice exhibited similar protective efficacy as EV76 when exposed to Y. pestis 201, both via s.c. or intranasal (i.n.) routes of administration. Moreover, when exposed to 200-400 LD50 Y. pestis strain 201Δcaf1 (non-encapsulated Y. pestis), EV76Δyp2 or EV76Δyp1&yp2 are able to afford about 50% protection to i.n. challenges, significantly better than the protection afforded by EV76. On 120 day, mice immunized with EV76Δyp2 or EV76Δyp1&yp2 cleared the i.n. challenge of Y. pestis 201-lux as quickly as those immunized with EV76, demonstrating 90-100% protection. Our results demonstrated that deletion of the yp2 gene is an effective strategy to attenuate virulence of Y. pestis EV76 while improving immunogenicity. Furthermore, EV76Δyp2 is a promising candidate for conferring protection against the pneumonic and bubonic forms of plague.


Subject(s)
Plague Vaccine , Vaccines , Yersinia pestis , Humans , Animals , Mice , Yersinia pestis/genetics , Open Reading Frames , Plague Vaccine/genetics , Cytokines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...