Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Opt Express ; 23(12): 15491-503, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193529

ABSTRACT

The emission behaviors of four light-emitting diodes (LEDs) of different substrate structures, including a lateral LED grown on sapphire, a vertical LED wafer-bonded onto Si (111), a bendable LED Ag-epoxied onto a flat metal, and another bendable LED Ag-epoxied onto a metal of a curved surface, under different duty cycles of current injection are compared. Their different variation trends of emission behavior with injection duty cycle are attributed to the different thermally-induced strain conditions in the epitaxial layers, which are controlled by their substrate structures, in increasing injection duty cycle or current level. The results of Raman scattering measurements during LED operation show that a stronger tensile strain is generated under heating for reducing the quantum-confined Stark effect and hence increasing emission efficiency when the epitaxial layer is not tightly bonded onto a hard substrate. Such a behavior is particularly stronger when the epitaxial layer is bent.

2.
Opt Express ; 22(14): 17303-19, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25090544

ABSTRACT

To achieve green emission from the sidewall non-polar quantum wells (QWs) of a GaN nanorod (NR) light-emitting diode, regularly patterned InGaN/GaN QW NR arrays are grown under various growth conditions of indium supply rate, QW growth temperature, and QW growth time for comparing their emission wavelength variations of the top-face c-plane and sidewall m-plane QWs based on photoluminescence and cathodoluminescence (CL) measurements. Although the variation trends of QW emission wavelength by changing those growth conditions in the NR structure are similar to those in the planar structure, the emission wavelength range of the QWs on an NR is significantly shorter than that in a planar structure under the same growth conditions. Under the growth conditions for a longer NR QW emission wavelength, the difference of emission wavelength between the top-face and sidewall QWs is smaller. Also, the variation range of the emission wavelength from the sidewall QWs over different heights on the sidewall becomes larger. On the other hand, strain state analysis based on transmission electron microscopy is undertaken to calibrate the average QW widths and average indium contents in the two groups of QW of an NR. The variation trends of the calibrated QW widths and indium contents are consistent with those of the CL emission wavelengths from various portions of NR QWs.

3.
Opt Express ; 22 Suppl 1: A155-66, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24921992

ABSTRACT

The radiated power enhancement and more congregated radiation of a radiating dipole within a GaN material when it is coupled with the localized surface plasmon (LSP) resonance modes induced on a surface Ag nanoparticle (NP) are numerically demonstrated. The numerical study is based on an algorithm including the induction of LSP resonance on the Ag NP by the source dipole and the feedback effect of the LSP resonance field on the source dipole behavior. The spectral peaks of radiated power enhancement correspond to the substrate LSP resonance modes with mode fields mainly distributed around the bottom of the Ag NP such that the coupling system radiates mainly into the GaN half-space. By moving the radiating dipole laterally away from the bottom of the Ag NP, the spectral peaks of radiated power enhancement red shift and their levels diminish with increasing lateral distance. The radiation patterns in the GaN half-space show more congregated radiation around the vertical direction, indicating that the light extraction efficiency can be enhanced in an LSP-coupled light-emitting device with surface metal NPs.

4.
Opt Express ; 22 Suppl 3: A842-56, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24922391

ABSTRACT

The enhancement of output intensity, the generation of polarized output, and the reduction of the efficiency droop effect in a surface plasmon (SP) coupled vertical light-emitting diode (LED) with an Ag nano-grating structure located between the p-GaN layer and the wafer bonding metal for inducing SP coupling with the InGaN/GaN quantum wells (QWs) are demonstrated. In fabricating the vertical LED, the patterned sapphire substrate is removed with a photoelectrochemical liftoff technique. Based on the reflection measurement from the metal grating structure and the numerical simulation result, it is found that the localized surface plasmon (LSP) resonance induced around the metal grating crest plays the major role in the SP-QW coupling process although a hybrid mode of LSP and surface plasmon polariton can be generated in the coupling process. By adding a surface grating structure to the SP-coupled vertical LED on the n-GaN side, the output intensity is further enhanced, the output polarization ratio is further increased, and the efficiency droop effect is further suppressed.

5.
Opt Express ; 22(7): 8367-75, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24718210

ABSTRACT

A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.

6.
Opt Express ; 22 Suppl 7: A1799-809, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607494

ABSTRACT

The growth and process of a regularly patterned nanorod (NR)- light-emitting diode (LED) array with its emission from sidewall non-polar quantum wells (QWs) are demonstrated. A pyramidal un-doped GaN structure is intentionally formed at the NR top for minimizing the current flow through this portion of the NR such that the injection current can be effectively guided to the sidewall m-plane InGaN/GaN QWs for emission excitation by a conformal transparent conductor (GaZnO). The injected current density at a given applied voltage of the NR LED device is similar to that of a planar c-plane or m-plane LED. The blue-shift trend of NR LED output spectrum with increasing injection current is caused by the non-uniform distributions of QW width and indium content along the height on a sidewall. The photoluminescence spectral shift under reversed bias confirms that the emission of the fabricated NR LED comes from non-polar QWs.

7.
Opt Express ; 21(15): 17686-94, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23938641

ABSTRACT

For enhancing the light extraction of a light-emitting diode, surface grating fabrication based on a simple method of combining photoelectrochemical (PEC) etching with phase mask interferometry has been demonstrated. To understand the optimum grating period in forming a surface grating on a vertical light-emitting diode (VLED), we construct a Llyod's interferometer within PEC electrolyte (KOH) to fabricate surface gratings of various periods on VLEDs for comparing their light extraction efficiencies. Also, to compare the effectiveness of light extraction enhancement between surface grating and rough surface, VLEDs with the rough surfaces fabricated with two different KOH wet etching methods are fabricated. The comparisons of VLED characterizations show that among those grating VLEDs, the light extraction is more effective in a VLED of a smaller grating period. Also, compared with VLEDs of rough surfaces, the grating VLEDs of short grating periods (<2 µm) have the higher light extraction efficiencies, even though the root-mean-square roughness of the rough surface is significantly larger than the grating groove depth.


Subject(s)
Lenses , Lighting/instrumentation , Refractometry/instrumentation , Semiconductors , Computer-Aided Design , Energy Transfer , Equipment Design , Equipment Failure Analysis , Surface Properties
8.
Opt Lett ; 38(17): 3370-3, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23988960

ABSTRACT

A light-emitting device consisting of a two-dimensional regularly patterned InGaN/GaN quantum well (QW) nanorod (NR) light-emitting diode (LED) array is implemented and characterized. The NR p-i-n structure includes n-GaN NR core and essentially conformal p-GaN shell. The active regions include nonpolar sidewall QWs and polar top-face QWs. A conformal layer of transparent GaZnO of low resistivity is deposited onto the NR LED structure for spreading the injection current over the sidewalls. It is found that the blue-shift range of the output spectral peak in increasing injection current is smaller than that of a planar LED of about the same operation wavelength in a similar variation range of injection current density although it is nonzero. The small blue-shift range is attributed to the mixed emission contributions from the nonpolar sidewall QWs and polar top-face QWs.

9.
Opt Express ; 20(20): 21860-74, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-23037336

ABSTRACT

CdZnO/ZnO quantum well (QW) samples are grown on GaN and ZnO templates with plasma-assisted molecular beam epitaxy under different conditions of substrate temperature, Cd effusion cell temperature, and O(2) flow rate for emission characteristics comparison. It is found that the Cd incorporation on the ZnO template is generally lower, when compared with that on the GaN template, such that the O(2) flow rate needs to be reduced for stoichiometric CdZnO/ZnO QW growth on the ZnO template. Besides the wurtzite (wt) CdZnO structure, the rock-salt (rs) CdZnO structure exists in the CdZnO well layers when the total Cd content is high. The rs structure may dominate over the wt structure in photoluminescence intensity when the total Cd content is high. In either group of samples on the GaN and ZnO templates, the emission efficiency first increases and then decreases with increasing total Cd content. The low emission efficiency at low (high) Cd content is attributed to the weaker quantum confinement (the poorer crystal quality) of the QWs. The emission efficiencies of the QW samples on the GaN template are generally higher than those on the ZnO template. The carrier localization behavior in a CdZnO/ZnO QW, grown on either GaN or ZnO template, is significantly weaker than that in an InGaN/GaN QW. The strength of the quantum-confined Stark effect generally increases with increasing Cd content in either group of samples on the GaN and ZnO templates.


Subject(s)
Cadmium Compounds/chemistry , Gallium/chemistry , Molecular Imprinting/methods , Oxides/chemistry , Quantum Dots , Zinc Oxide/chemistry , Adsorption , Light , Materials Testing , Scattering, Radiation
10.
Opt Express ; 20(14): 15859-71, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772276

ABSTRACT

With the nano-imprint lithography and the pulsed growth mode of metalorganic chemical vapor deposition, a regularly-patterned, c-axis nitride nanorod (NR) array of quite uniform geometry with simultaneous depositions of top-face, c-plane disc-like and sidewall, m-plane core-shell InGaN/GaN quantum well (QW) structures is formed. The differences of geometry and composition between these two groups of QW are studied with scanning electron microscopy, cathodoluminescence, and transmission electron microscopy (TEM). In particular, the strain state analysis results in TEM observations provide us with the information about the QW width and composition. It is found that the QW widths are narrower and the indium contents are higher in the sidewall m-plane QWs, when compared with the top-face c-plane QWs. Also, in the sidewall m-plane QWs, the QW width (indium content) decreases (increases) with the height on the sidewall. The observed results can be interpreted with the migration behaviors of the constituent atoms along the NR sidewall from the bottom.

11.
Opt Express ; 20(10): 11321-35, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22565753

ABSTRACT

The counteraction between the increased carrier localization effect due to the change of composition nanostructure in the quantum wells (QWs), which is caused by the thermal annealing process, and the enhanced quantum-confined Stark effect in the QWs due to the increased piezoelectric field, which is caused by the increased p-type layer thickness, when the p-type layer is grown at a high temperature on the InGaN/GaN QWs of a high-indium light-emitting diode (LED) is demonstrated. Temperature- and excitation power-dependent photoluminescence (PL) measurements are performed on three groups of sample, including 1) the samples with both effects of thermal annealing and increased p-type thickness, 2) those only with the similar thermal annealing process, and 3) those with increased overgrowth thickness and minimized thermal annealing effect. From the comparisons of emission wavelength, internal quantum efficiency (IQE), spectral shift with increasing PL excitation level, and calibrated activation energy of carrier localization between various samples in the three groups, one can clearly see the individual effects of thermal annealing and increased p-type layer thickness. The counteraction leads to increased IQE and blue-shifted emission spectrum with increasing p-type thickness when the thickness is below a certain value (20-nm p-AlGaN plus 60-nm p-GaN under our growth conditions). Beyond this thickness, the IQE value decreases and the emission spectrum red shifts with increasing p-type thickness.


Subject(s)
Gallium/chemistry , Indium/chemistry , Optics and Photonics , Photochemistry/methods , Calibration , Computer Simulation , Equipment Design , Hot Temperature , Light , Luminescence , Temperature , X-Ray Diffraction
12.
Nanotechnology ; 23(16): 165201, 2012 04 27.
Article in English | MEDLINE | ID: mdl-22470086

ABSTRACT

The photo-response of a ZnO nanoparticle embedded in a nanopore made on a silicon nitride membrane is investigated. The ZnO nanoparticle is manipulated onto the nanopore and sandwiched between aluminum contact electrodes from both the top and bottom. The asymmetric device structure facilitates current-voltage rectification that enables photovoltaic capacity. Under illumination, the device shows open-circuit voltage as well as short-circuit current. The fill factor is found to increase at low temperatures and reaches 48.6% at 100 K. The nanopore structure and the manipulation technique provide a solid platform for exploring the electrical properties of single nanoparticles.

13.
Nanotechnology ; 22(47): 475201, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-22049151

ABSTRACT

Based on the fabrication of Ag nanoparticles (NPs) with controlled geometry and surface density on an InGaN/GaN quantum well (QW) epitaxial structure, which contains indium-rich nano-clusters for producing localized states and free-carrier (delocalized) states in the QWs, and the characterization of their localized surface plasmon (LSP) coupling behavior with the carriers in the QWs, the interplay behavior of LSP coupling with carrier delocalization in the QWs is demonstrated. By using the polystyrene nanosphere lithography technique with an appropriate nanosphere size and adjusting the post-fabrication thermal annealing condition, the induced LSP resonance wavelength of the fabricated Ag NPs on the QW sample can match the QW emission wavelength for generating the coherent coupling between the carriers in the QWs and the induced LSP. The coupling leads to the enhancement of radiative recombination rate in the QWs and results in increased photoluminescence (PL) intensity, red-shifted PL spectrum, reduced PL decay time, and enhanced internal quantum efficiency. It is found that the observed effects are mainly due to the LSP coupling with the delocalized carriers in the QWs.

14.
Opt Express ; 18(26): 26872-8, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21196964

ABSTRACT

Voltage controlled photoluminescence (PL) blinking behavior in CdSe nano-particles (NPs) is studied. The NPs are sandwiched between a p-type silicon substrate and a thin Au electrode, which serve respectively as source and drain electrodes. The blinking PL from the NPs can be controlled by the bias voltage across the two electrodes. However, luminescence diminishes when photo excitation power is weak or bias is lower than a threshold voltage. The observed PL blinking is explained by a circuit model, which involves charge tunneling, Fowler-Nordheim (F-N) emission, and charging effect. The blinking intensity is controlled by the number of F-N emitted electrons whereas the pulse interval is associated with the time required for hole accumulation in the NPs. The intensity of luminescence blinking for NP clusters is found to be much higher compared to that of blinking from isolated NPs. This is explained by a collective recombination of F-N emitted electrons and accumulated holes in the NP clusters. This study provides a simple way of controlling PL blinking.


Subject(s)
Lighting/instrumentation , Luminescent Measurements/instrumentation , Nanoparticles/chemistry , Quantum Dots , Signal Processing, Computer-Assisted/instrumentation , Transistors, Electronic , Computer-Aided Design , Electromagnetic Fields , Equipment Design , Equipment Failure Analysis , Nanoparticles/ultrastructure , Particle Size
15.
Appl Opt ; 41(9): 1661-7, 2002 Mar 20.
Article in English | MEDLINE | ID: mdl-11921793

ABSTRACT

A temperature-independent fiber-Bragg-grating strains-sensing system, based on a novel optical-power-detection scheme, is developed and analyzed. In this system a pair of fiber Bragg gratings with reflection spectra either partially or substantially overlapping is placed side by side to form a temperature-independent strain-sensor unit. Conventional wavelength-interrogation techniques are not used here, and instead an optical-power-detection scheme is proposed to directly calibrate the measurand, i.e., the strain. Unlike the conventional approach in a multiplexed sensing system, the presented power-detection-based interrogation method does not need the fiber-Bragg-grating sensors to be spectrally separate. The only requirement is that the spectra of the two fiber Bragg gratings of each sensor unit in a multiplexed system be identical or slightly separate (slightly overlapping spectra would also work in the sensing scheme) and the source's optical power be sufficient for sensitive measurement. Based on a three-sensor-unit system, we demonstrate simple strain measurements of high linearity (+/- 0.4%), good sensitivity [2 microstrains (microS)], high thermal stability (+/- 0.8%), and zero cross talk. The effects of light source spectral flatness and fiber bending loss on measurement accuracy are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...