Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Appl Opt ; 62(7): B148-B155, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37132900

ABSTRACT

In this paper, a hydrothermal method is used to synthesize a nickel oxide nanostructure (nano-NiO) for its application to inverted perovskite solar cells. These pore nanostructures were employed to increase both the contact and channel between the hole transport and perovskite layers of an ITO/nano-N i O/C H 3 N H 3 P b I 3/P C B M/A g device. The purpose of this research is twofold. First, three different nano-NiO morphologies were synthesized at temperatures of 140°C, 160°C, and 180°C. Then, a Raman spectrometer was used to check the phonon vibration and magnon scattering characteristics after an annealing temperature of 500°C. Second, nano-NiO powders were dispersed in isopropanol for subsequent spin coating on the inverted solar cells. The nano-NiO morphologies were multi-layer flakes, microspheres, and particles at synthesis temperatures of 140°C, 160°C, and 180°C, respectively. When the microsphere nano-NiO was used as the hole transport layer, the perovskite layer had a larger coverage of 83.9%. The grain size of the perovskite layer was analyzed by x-ray diffraction, and strong crystal orientations of (110) and (220) peaks were found. Despite this, the power conversion efficiency could affect the promotion, which is 1.37 times higher than the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate element conversion efficiency of the planar structure.

2.
ACS Appl Mater Interfaces ; 12(29): 32905-32914, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32639739

ABSTRACT

The hybrid electrode of single-wall carbon nanotubes (SWCNTs)/Cu2O/ZnO nanorods (NRs)/graphene used on the current-response nonenzymatic glucose sensor was investigated herein, regarding the mechanism of the formation of functional channel. The synthesis of the hybrid electrode involved four steps. First, the graphene was grown by chemical vapor deposition (CVD) and then wet-transferred onto indium transparent oxide (ITO) glass. Second, a zinc oxide (ZnO) seed layer was sputtered onto the graphene/ITO glass, and ZnO NRs were gradually grown by the hydrothermal method. Third, the ZnO NRs were clad with cuprous oxide (Cu2O) by the electrochemical method. Fourth, the SWCNTs were dropped onto the Cu2O surface, with a Nafion surfactant. X-ray diffraction spectra, scanning electron microscopy spectra, Raman spectra, cyclic voltammograms, and amperometric response diagrams were used to verify the performance of the device. Results showed that sensitivity increased significantly from 11.2 to 289.8 µA mM-1 cm-2, linear range increased significantly from 0.6 to 11.1 mM, and the coefficient of determination (R2) increased from 0.9766 to 0.9923, all by the addition of the SWCNTs/Cu2O functional channel mechanism and without graphene. When the graphene was added to the functional channel electrode, sensitivity increased again from 289.8 to 466.1 µA mM-1 cm-2 at low concentrations.


Subject(s)
Biosensing Techniques , Copper/chemistry , Glucose/analysis , Graphite/chemistry , Nanotubes, Carbon/chemistry , Zinc Oxide/chemistry , Electrodes , Particle Size , Surface Properties
3.
Appl Opt ; 59(5): 1454-1460, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32225404

ABSTRACT

This research investigated the optoelectronic properties and anisotropic stress of Mo-doped ZnO (MZO) films, which were deposited on polyethylene terephthalate and polycarbonate flexible substrates with radio frequency magnetron sputtering. The optical properties, x-ray diffraction (XRD) spectra, Hall effect measurements, and self-made phase-shift shadow moiré interferometer readings were utilized to evaluate the performances of the MZO films. Based on the results, the transmittance and (002) peak size of the XRD spectra decreased when the substrate temperature increased. However, this took place especially when the oxygen flow was on the increase. Also, carrier mobility, carrier concentration, and anisotropic stresses increased at higher substrate temperatures, but this was not the case when the oxygen flow increased. The energy gap (Eg) of the MZO films showed a blueshift with an increase in the substrate temperatures, but this rather changed to a redshift when the oxygen flow was observed to be on the rise.

4.
Appl Opt ; 56(4): C163-C167, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28158070

ABSTRACT

Transparent conductive Al-doped ZnO (AZO) thin films were deposited on polyethylene terephthalate (PET) and polycarbonate (PC) substrates using radio frequency (RF) magnetron sputtering. The biaxial stress was measured with a double beam shadow moiré interferometer, and x-ray diffraction (XRD) was used to investigate the crystal orientation of ZnO. The substrate temperature was varied from room temperature to 150°C in steps of 25°C. The experimental results showed that the residual and shearing stresses increased with the increase in substrate temperature. The residual stress can be separated into principle and shearing stresses by Mohr's circle rule, and the shearing stress (tensile stress) was different from the compressive stress of the residual stress. However, the optimal substrate temperatures for PET and PC were 75°C and 100°C, and the shearing stresses were 424.82 and 543.68 MPa, respectively. AZO/PET and AZO/PC thin films cracked at substrate temperatures of 75°C and 100°C, respectively. AZO/PET thin film at a substrate temperature of 100°C had a resistivity low to the order of 10-3 Ω-cm.

5.
Appl Opt ; 56(4): 1087-1093, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28158117

ABSTRACT

A confocal reflector lamp with an asymmetric triangular prism was designed for a stacking illumination of a light emitting diode (LED) automobile headlamp fitting ECE R112 asymmetrical regulation. The optical system includes three 1st elliptic reflectors, three 2nd parabolic reflectors, and one asymmetric triangular prism. Three elliptic and parabolic reflectors were assembled with three confocal reflector modules; two modules projected the cut-off line of a 0° angle, and the other module projected the cut-off line of a 15° angle using of an asymmetric triangular prism. The ray tracing, optical simulation, and mockup experiment results exhibited that the illumination distribution met the regulation of ECE R112 class B, and the ideal efficiency could reach 96.8% in theory. The tolerance analysis showed the efficiency remained above 98% under the error values of ±0.2 mm of the position of the LED light source, and the y direction of the up-down movement was more sensitive than the x and z directions. The measurement results of the mockup sample safety factor were all larger than 1.15 and supported the regulation of the ECE R112 Class B.

6.
Appl Opt ; 53(14): 3110-8, 2014 May 10.
Article in English | MEDLINE | ID: mdl-24922033

ABSTRACT

The effects of different pitch and angle of gradual-triangle lenticular lens for the point-blank LED fog lamp were investigated under the standard of ECE R19. The novel LED fog lamp was assembled from a point-blank LED light source, a parabolic reflector, and a gradual-triangle lenticular lens. Light tracing analysis was used for the design of the gradual-triangle lenticular lens. The pitch, which varied from 1 to 6 mm, and the apex angle, which changed from 5 to 32 deg, were both investigated in regard to the gradual-triangle lenticular lens. The optimum pitch was 5 mm, and the efficiency of the lamp system and lenticular lens could reach 93% and 98.1% by simulation, respectively. The results of experiment had over 94%, which is similar to that of simulation by normalized cross correlation (NCC) for the light intensity.

7.
Appl Opt ; 53(4): A154-8, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24514208

ABSTRACT

This study investigates the optical constants of WO3 electrochromic films and NiO ion-storage films in bleached and colored states and that of a Ta2O5 film used as an ion conductor. These thin films were all prepared by electron-beam evaporation and characterized using a spectroscopic ellipsometer. The spectra obtained using a spectrophotometer and those calculated from the optical constants agreed closely. An all-solid thin-film reflective electrochromic device was fabricated and discussed. Its mean contrast ratio of reflectance in the range of 400-700 nm was 37.91.

8.
Appl Opt ; 53(4): A242-7, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24514222

ABSTRACT

This paper studies the preparation of a zinc oxide (ZnO) seed layer deposited onto carbon nanotubes (CNTs) via RF sputtering, and the growth of ZnO/CNT composite via the hydrothermal method. The ZnO "thorns" have been successfully deposited on CNT "stems." The research focuses on the ZnO seed layer with different sputtering times and annealing processes. A scanning electron microscopy (SEM) investigation showed that the length and amount of ZnO thorns decreased with increased sputtering time of the seed layer. The x-ray diffraction (XRD) results showed that the ZnO crystalline structures improved after the seed layer, annealing at peaks of (100), (002), and (101). The results of Raman spectra showed that the ZnO seed layer deposited onto the CNTs, and the annealing, caused damage to the CNTs, reducing the IG/ID ratio from 0.9 to 0.5. Furthermore, the highest UV emission of thorn-like ZnO/CNTs occurred at a peak of 380 nm with seed layer deposition time of 2 min, after annealing.

9.
Appl Opt ; 53(4): A321-9, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24514234

ABSTRACT

Research was undertaken to investigate the electrochromic and optical properties of tungsten oxide (WO3) films deposited by introducing hydrogen with a direct current (DC) and pulsed DC sputtering. The results show that WO3 films have optimum electrochromic properties at a hydrogen flow of 4 and 3 sccm for DC and pulsed DC, respectively. In the Raman spectra, the peak intensity increased with the increase of hydrogen flow at both 770 cm1 and 950 cm(-1) peaks, which resulted in bonds of W(6+)-O and W(6+)=O, respectively. Simultaneously, the transmittance (ΔT550 nm) variations were 65.6% and 64.4%, and the average transmittance (ΔT400-500 nm) variations were 56.7% and 56.4% for DC and pulsed DC, respectively. The bleached/colored ability of the cyclic voltammograms (CVs) was DC>pulsed DC, and the resistances of AC impedance were pulsed DC>DC.

10.
Opt Express ; 21(3): 3201-12, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23481779

ABSTRACT

The illumination pattern of an LED street light is required to have a rectangular distribution at a divergence-angle ratio of 7:3 for economical illumination. Hence, research supplying a secondary optics with two cylindrical lenses was different from free-form curvature for rectangular illumination. The analytical solution for curvatures with different ratio rectangles solved this detail by light tracing and boundary conditions. Similarities between the experiments and the simulation for a single LED and a 9-LED module were analyzed by Normalized Cross Correlation (NCC), and the error rate was studied by the Root Mean Square (RMS). The tolerance of position must be kept under ± 0.2 mm in the x, y and z directions to ensure that the relative illumination is over 99%.


Subject(s)
Lenses , Lighting/instrumentation , Equipment Design , Equipment Failure Analysis
11.
Appl Opt ; 51(10): 1566-71, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22505076

ABSTRACT

This study constructed a measurement system that can quickly and accurately analyze the residual stress of flexible electronics. A double beam shadow moiré interferometer was set up to measure and evaluate the residual stress of tin-doped indium oxide films on a polyethylene terephthalate substrate. However, this system required only two symmetrical fringes to evaluate the residual stress of transparent conductive oxide films on flexible substrate. Applying the grating translation techniques to the double beam shadow moiré interferometer greatly improved the measurement resolution and accuracy, and the relative error was reduced to 1.2%.

12.
Appl Opt ; 47(13): C284-7, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18449260

ABSTRACT

Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

13.
Appl Opt ; 47(13): C315-8, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18449266

ABSTRACT

This investigation proposes the use of the shadow moiré method (SMM) to measure stress in a thin film that is coated on a flexible substrate. The technique defines the profile of the sample by contour lines without the application of an external force, and the radius of curvature is calculated from these contour lines. The SMM is insensitive to environmental noise and has the same advantages as the interference method, such as being nondestructive and easy to use. For Al film with a thickness of 120 nm coated on a polyimide substrate by a DC magnetron sputtering system (800 W, room temperature), the stress is 0.45 +/- 0.042 GPa.

14.
Appl Opt ; 45(9): 1979-84, 2006 Mar 20.
Article in English | MEDLINE | ID: mdl-16579568

ABSTRACT

Titanium oxide thin films were deposited by electron-beam evaporation with ion-beam-assisted deposition. The effect of the substrate temperature and annealing temperature on the columnar microstructure and recrystallization of titanium oxide was studied. The values of the refractive index varied from 2.26 to 2.4, indicating that the different substrate temperatures affected the film density. X-ray diffraction revealed that all films were amorphous as deposited. At annealing temperatures from 100 degrees C to 300 degrees C, only the anatase phase was formed. As the substrate temperature increased from 150 degrees C to 200 degrees C to 250 degrees C, the recrystallization temperature fell from 300 degrees C through 250 degrees C to 200 degrees C. Changing the substrate temperature resulted in the formation of various types of columnar microstructure, as determined by scanning-electron microscopy. Different columnar structures resulted in different surface morphologies, as measured by atomic-force microscopy.

15.
Appl Opt ; 45(13): 3091-6, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16639458

ABSTRACT

Titanium oxide films were prepared by ion-beam-assisted deposition on glass substrates at various substrate temperatures. The effect of the temperature of thermal annealing from 100 degrees C to 300 degrees C on the optical properties and residual stress was investigated. The influence on the stoichiometry and residual stress of titanium oxides deposited at different substrate temperature was discussed. The residual-stress was minimum and the extinction coefficient was maximum at an annealing temperature of 200 degrees C with a substrate temperature of 150 degrees C. However, when the substrate temperature was increased to 200 degrees C and 250 degrees C, the residual stress was minimum and the extinction coefficient was maximum at an annealing temperature of 250 degrees C. The spectra of x-ray photoelectron spectroscopy reveal that the films lost oxygen and slowly generated lower suboxides at the annealing temperature at which the residual stress was minimum and the extinction coefficient was maximum. As the annealing temperature increased above the temperature at minimum stress, the lower suboxides began to capture oxygen and form stable oxides. TiO2 films deposited at substrate temperatures of 200 degrees C and 250 degrees C were more stable than films deposited at 150 degrees C.

16.
Appl Opt ; 44(15): 2996-3000, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15929289

ABSTRACT

The effects of thermal annealing of titanium oxide films deposited by ion-beam assistance at annealing temperatures from 100 degrees C to 300 degrees C on the residual stress and optical properties of the films was investigated. The refractive indices and extinction coefficients increased gradually as the temperature was increased from 100 degrees C to 200 degrees C and then declined gradually as the temperature was increased further from 200 degrees C to 300 degrees C. The film lost oxygen and slowly generated lower suboxides as the annealing temperature was reduced below 200 degrees C, as determined by x-ray photoelectron spectroscopy (XPS). As the annealing temperature increased above 200 degrees C, the lower suboxides began to capture oxygen and form stable oxides. XPS measurements were made to verify both the binding energy associated with the Ti 2p line and the variation of the O 1s line. A Twyman-Green interferometer was employed for phase-shift interferometry to study the residual stress. The residual stress declined as the temperature was reduced from 100 degrees C to 200 degrees C because the lower suboxides reduced the stress in the film. Above 200 degrees C, the film began to capture oxygen, so the residual stress rose. At 300 degrees C, the film was no longer amorphous as the anatase was observed by x-ray diffraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...