Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36236230

ABSTRACT

This study presents a vision-based water color identification system designed for monitoring aquaculture ponds. The algorithm proposed in this system can identify water color, which is an important factor in aquaculture farming management. To address the effect of outdoor lighting conditions on the proposed system, a color correction method using a color checkerboard was introduced. Several candidates for water-only image patches were extracted by performing image segmentation and fuzzy inferencing. Finally, a deep learning-based model was employed to identify the color of these patches and then find the representative color of the water. Experiments at different aquaculture sites verified the effectiveness of the proposed system and its algorithm. The color identification accuracy exceeded 96% for the test data.


Subject(s)
Aquaculture , Water , Agriculture/methods , Algorithms , Aquaculture/methods , Color , Farms
2.
ACS Nano ; 14(1): 985-992, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31904930

ABSTRACT

The most pressing barrier for the development of advanced electronics based on two-dimensional (2D) layered semiconductors stems from the lack of site-selective synthesis of complementary n- and p-channels with low contact resistance. Here, we report an in-plane epitaxial route for the growth of interlaced 2D semiconductor monolayers using chemical vapor deposition with a gas-confined scheme, in which patterned graphene (Gr) serves as a guiding template for site-selective growth of Gr-WS2-Gr and Gr-WSe2-Gr heterostructures. The Gr/2D semiconductor interface exhibits a transparent contact with a nearly ideal pinning factor of 0.95 for the n-channel WS2 and 0.92 for the p-channel WSe2. The effective depinning of the Fermi level gives an ultralow contact resistance of 0.75 and 1.20 kΩ·µm for WS2 and WSe2, respectively. Integrated logic circuits including inverter, NAND gate, static random access memory, and five-stage ring oscillator are constructed using the complementary Gr-WS2-Gr-WSe2-Gr heterojunctions as a fundamental building block, featuring the prominent performance metrics of high operation frequency (>0.2 GHz), low-power consumption, large noise margins, and high operational stability. The technology presented here provides a speculative look at the electronic circuitry built on atomic-scale semiconductors in the near future.

3.
ACS Nano ; 13(3): 3269-3279, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30790512

ABSTRACT

One of the primary limitations of previously reported two-dimensional (2D) photodetectors is a low frequency response (≪ 1 Hz) for sensitive devices with gain. Yet, little efforts have been devoted to improve the temporal response of photodetectors while maintaining high gain and responsivity. Here, we demonstrate a gain of 6.3 × 103 electrons per photon and a responsivity of 2.6 × 103 A/W while simultaneously exhibiting an ultrafast response time of 40-65 µs in a hybrid photodetector that consists of graphene-WS2-graphene junctions covered with indium (In) adatoms atop. The resultant responsivity is 6 orders of magnitude higher than that of conventional photodetectors comprising solely of a Au-WS2-Au junction. The photogain is provided mainly by the adsorbed In adatoms, from which photogenerated electrons can be transferred to the WS2 channel, while holes remain trapped in In adatoms, leading to a photogating effect as electrons are recirculating during the residence of holes in In adatoms. At a gate voltage near the Dirac point of graphene, a detectivity of D* = 2.2 × 1012 Jones and an ON/OFF ratio of 104 are achieved. The enhanced performance of the device can be attributed partly to the transparent graphene/WS2 contact and partly to the strong capacitive coupling of the In adatoms with the WS2 channel, which enables ultrafast carrier dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...