Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189085, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341110

ABSTRACT

PBX1 is a critical transcription factor at the top of various cell fate-determining pathways. In cancer, PBX1 stands at the crossroads of multiple oncogenic signaling pathways and mediates responses by recruiting a broad repertoire of downstream targets. Research thus far has corroborated the involvement of PBX1 in cancer proliferation, resisting apoptosis, tumor-associated neoangiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, immune evasion, genome instability, and dysregulating cellular metabolism. Recently, our understanding of the functional regulation of the PBX1 protein has advanced, as increasing evidence has depicted a regulatory network consisting of transcriptional, post-transcriptional, and post-translational levels of control mechanisms. Furthermore, accumulating studies have supported the clinical utilization of PBX1 as a prognostic or therapeutic target in cancer. Preliminary results showed that PBX1 entails vast potential as a targetable master regulator in the treatment of cancer, particularly in those with high-risk features and resistance to other therapeutic strategies. In this review, we will explore the regulation, protein-protein interactions, molecular pathways, clinical application, and future challenges of PBX1.


Subject(s)
Neoplasms , Transcription Factors , Humans , Gene Expression Regulation , Molecular Biology , Neoplasms/drug therapy , Neoplasms/genetics , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Transcription Factors/genetics
2.
J Thromb Haemost ; 21(2): 329-343, 2023 02.
Article in English | MEDLINE | ID: mdl-36700509

ABSTRACT

BACKGROUND: Functioning as important hematologic cells for hemostasis, wound healing and immune defense platelets are produced before being released into the blood by cytoplasmic fragmentation at the end of the megakaryocyte (MK) differentiation, during which the involvement of both apoptosis and autophagy has been reported. Inhibitory sialic acid-binding immunoglobulin-like lectin-7 gene (Siglec-7) can be expressed on platelets and induce apoptosis on activation for uncharacterized function. OBJECTIVE: We aimed to investigate the regulatory mechanism for Siglec-7 activation along MK differentiation and its physiologic role during the MK maturation and platelet formation. METHODS: By using 2 well-established MK differentiation models (HEL and K562) and human primary CD34+ cell, we examined the upregulations of transcript and protein levels of Siglec-7 during MK differentiation, and the effect of Siglec-7 surface presence on MK differentiation and platelet-like particles (PLPs) release. RESULTS: We show that both transcripts and surface Siglec-7 were elevated during MK differentiation, and the histone deacetylase 1 (HDAC1) acted as a negative regulator for Siglec-7 activation. By increasing Siglec-7 surface expression, we found that increased presence of Siglec-7 not only enhanced MK maturation but also the release of PLPs by activating caspase 3-dependent signaling, as evidenced in the observation of more CD41, polyploidy, and platelet factor 4 transcript formations. CONCLUSION: In this study, we demonstrated that Siglec-7 activation was subjected to epigenetic regulation, and the resulting induced expression of surface Siglec-7 played an important regulatory role in promoting MK differentiation, maturation, and PLP formation.


Subject(s)
Histones , Megakaryocytes , Sialic Acid Binding Immunoglobulin-like Lectins , Humans , Cell Differentiation , Epigenesis, Genetic , Sialic Acid Binding Immunoglobulin-like Lectins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...