Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (143)2019 01 07.
Article in English | MEDLINE | ID: mdl-30663675

ABSTRACT

In this report, we present a method for the construction of a soluble lead flow battery (SLFB) with an extended cycle life. By supplying an adequate amount of sodium acetate (NaOAc) to the electrolyte, a cycle life extension of over 50% is demonstrated for SLFBs via long-term galvanostatic charge/discharge experiments. A higher quality of the PbO2 electrodeposit at the positive electrode is quantitatively validated for NaOAc-added electrolyte by throwing index (TI) measurements. Images acquired by scanning electron microscopy (SEM) also exhibit more integrated PbO2 surface morphology when the SLFB is operated with the NaOAc-added electrolyte. This work indicates that electrolyte modification can be a plausible route to economically enable SLFBs for large-scale energy storage.


Subject(s)
Electric Power Supplies , Sodium Acetate/chemistry , Electrodes , Electrolytes , Lead
2.
Bioelectrochemistry ; 124: 119-126, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30015268

ABSTRACT

Using an electrochemical cell equipped with carbon felt electrodes (poised at +0.63 V vs. SHE), the current production capabilities of two Shewanella strains-NTOU1 and KR-12-were examined under various conditions with lactate as an electron donor. The metabolic charge produced in the tricarboxylic acid cycle (QTCA) was calculated by mass-balance. The data showed a linear relation between the electric coulomb production (QEL) and QTCA with an R2 of 0.65. In addition, a large amount of pyruvate accumulation was observed at pH = 6, rendering QTCA negative. The results indicate an occurrence of an undesired cataplerotic reaction. It was also found that QTCA provides important information showing the oxygen-boosting TCA cycle and anodic-current generation of Shewanella spp. Linear dependence of the change in charge for biomass growth (4.52FΔnCell) on QTCA was also found as expressed by 4.52FΔnCell = 1.0428 QTCA + 0.0442, indicating that these two charge quantities are inherently identical under most of the experimental conditions. In the mediator-spiked experiments, the external addition of the mediators (ferricyanide, anthraquinone-2, 6-disulfonate, and riboflavin) beyond certain concentrations inhibited the activity of the TCA cycle, indicating that the oxidative phosphorylation is deactivated by excessive amounts of mediators, yet Shewanella spp. are constrained with regard to carrying out the substrate-level phosphorylation.


Subject(s)
Citric Acid Cycle , Shewanella/metabolism , Anthraquinones/chemistry , Biomass , Electron Transport , Ferricyanides/chemistry , Hydrogen-Ion Concentration , Lactic Acid/metabolism , NAD/metabolism , Oxidation-Reduction , Oxidative Phosphorylation , Riboflavin/chemistry , Shewanella/growth & development , Sulfonic Acids/chemistry
3.
Nat Mater ; 5(7): 541-4, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16767095

ABSTRACT

The drive towards increased energy efficiency and reduced air pollution has led to accelerated worldwide development of fuel cells. As the performance and cost of fuel cells have improved, the materials comprising them have become increasingly sophisticated, both in composition and microstructure. In particular, state-of-the-art fuel-cell electrodes typically have a complex micro/nano-structure involving interconnected electronically and ionically conducting phases, gas-phase porosity, and catalytically active surfaces. Determining this microstructure is a critical, yet usually missing, link between materials properties/processing and electrode performance. Current methods of microstructural analysis, such as scanning electron microscopy, only provide two-dimensional anecdotes of the microstructure, and thus limited information about how regions are interconnected in three-dimensional space. Here we demonstrate the use of dual-beam focused ion beam-scanning electron microscopy to make a complete three-dimensional reconstruction of a solid-oxide fuel-cell electrode. We use this data to calculate critical microstructural features such as volume fractions and surface areas of specific phases, three-phase boundary length, and the connectivity and tortuosity of specific subphases.

SELECTION OF CITATIONS
SEARCH DETAIL
...