Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 355: 124176, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38768675

ABSTRACT

Scant research has pinpointed the year of minimum PM2.5 concentration through extensive, uninterrupted monitoring, nor has it thoroughly assessed carcinogenic risks associated with analyzing numerous components during this nadir in Beijing. This study endeavored to delineate the atmospheric PM2.5 pollution in Beijing from 2015 to 2022 and to undertake comprehensive evaluation of carcinogenic risks associated with the composition of atmospheric PM2.5 during the year exhibiting the lowest concentration. PM2.5 concentrations were monitored gradually in 9 districts of Beijing for 7 consecutive days per month from 2015 to 2022, and 32 kinds of PM2.5 components collected in the lowest PM2.5 concentration year were analyzed. This comprehensive dataset served as the basis for carcinogenic risk assessment using Monte Carlo simulation. And we applied the Positive Matrix Factorization (PMF) method to identity the sources of atmospheric PM2.5. Furthermore, we integrated this source appointment model with risk assessment model to discern the origins of these risks. The findings revealed that the annual average PM2.5 concentration in 2022 stood at 43.1 µg/m3, marking the lowest level recorded. The mean carcinogenic risks of atmospheric PM2.5 exposure calculated at 6.30E-6 (empirical 95% CI 1.09E-6 to 2.25E-5) in 2022. The PMF model suggested that secondary sources (35.4%), coal combustion (25.6%), resuspended dust (15.1%), biomass combustion (14.1%), vehicle emissions (7.1%), industrial emissions (2.0%) and others (0.7%) were the main sources of atmospheric PM2.5 in Beijing. The mixed model revealed that coal combustion (2.41E-6), vehicle emissions (1.90E-6) and industrial emissions (1.32E-6) were the main sources of carcinogenic risks with caution. Despite a continual decrease in atmospheric PM2.5 concentration in recent years, the lowest concentration levels still pose non-negligible carcinogenic risks. Notably, the carcinogenic risks associated with metals and metalloids exceeded that of PAHs. And the distribution of risk sources did not align proportionally with the distribution of PM2.5 mass concentration.

2.
ACS Appl Mater Interfaces ; 16(22): 28011-28028, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38783516

ABSTRACT

In vivo real-time qualitative and quantitative analysis is essential for the diagnosis and treatment of diseases such as tumors. Near-infrared-II (NIR-II, 1000-1700 nm) bioimaging is an emerging visualization modality based on fluorescent materials. The advantages of NIR-II region fluorescent materials in terms of reduced photon scattering and low tissue autofluorescence enable NIR-II bioimaging with high resolution and increasing depth of tissue penetration, and thus have great potential for in vivo qualitative and quantitative analysis. In this review, we first summarize recent advances in NIR-II imaging, including fluorescent probe selection, quantitative analysis strategies, and imaging. Then, we describe in detail representative applications to illustrate how NIR-II fluorescence imaging has become an important tool for in vivo quantitative analysis. Finally, we describe the future possibilities and challenges of NIR-II fluorescence imaging.


Subject(s)
Fluorescent Dyes , Optical Imaging , Fluorescent Dyes/chemistry , Optical Imaging/methods , Humans , Animals , Spectroscopy, Near-Infrared/methods , Neoplasms/diagnostic imaging , Infrared Rays
3.
Small Methods ; : e2400084, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738733

ABSTRACT

Doping plays a crucial role in modulating and enhancing the performance of organic semiconductor (OSC) devices. In this study, the critical role of dopants is underscored in shaping the morphology and structure of OSC films, which in turn profoundly influences their properties. Two dopants, trityl tetrakis(pentafluorophenyl) (TrTPFB) and N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate (DMA-TPFB), are examined for their doping effects on poly(3-hexylthiophene) (P3HT) and PBBT-2T host OSCs. It is found that although TrTPFB exhibits higher doping efficiency, OSCs doped with DMA-TPFB achieve comparable or even enhanced electrical conductivity. Indeed, the electrical conductivity of DMA-TPFB-doped P3HT reaches over 67 S cm-1, which is a record-high value for mixed-solution-doped P3HT. This can be attributed to DMA-TPFB inducing a higher degree of crystallinity and reduced structural disorder. Moreover, the beneficial impact of DMA-TPFB on the OSC films' morphology and structure results in superior thermoelectric performance in the doped OSCs. These findings highlight the significance of dopant-induced morphological and structural considerations in enhancing the film characteristics of OSCs, opening up a new avenue for optimization of dopant performance.

4.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542857

ABSTRACT

To produce functional protective textiles with minimal environmental footprints, we developed durable superhydrophobic antimicrobial textiles. These textiles are characterized by a micro-pleated structure on polyester fiber surfaces, achieved through a novel plasma impregnation crosslinking process. This process involved the use of water as the dispersion medium, water-soluble nanosilver monomers for antimicrobial efficacy, fluorine-free polydimethylsiloxane (PDMS) for hydrophobicity, and polyester (PET) fabric as the base material. The altered surface properties of these fabrics were extensively analyzed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometry (XPS), thermogravimetric analysis (TGA), and water contact angle (WCA) measurements. The antimicrobial performance of the strains was evaluated using Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. After treatment, the fabrics exhibited enhanced hydrophobic and antimicrobial properties, which was attributed to the presence of a micro-pleated structure and nanosilver. The modified textiles demonstrated a static WCA of approximately 154° and an impressive 99.99% inhibition rate against both test microbes. Notably, the WCA remained above 140° even after 500 washing cycles or 3000 friction cycles.


Subject(s)
Anti-Infective Agents , Polyesters , Silver , Polyesters/chemistry , Textiles , Anti-Infective Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Water/chemistry
5.
Adv Mater ; 36(18): e2311457, 2024 May.
Article in English | MEDLINE | ID: mdl-38243660

ABSTRACT

The extracellular space (ECS) is an important barrier against viral attack on brain cells, and dynamic changes in ECS microstructure characteristics are closely related to the progression of viral encephalitis in the brain and the efficacy of antiviral drugs. However, mapping the precise morphological and rheological features of the ECS in viral encephalitis is still challenging so far. Here, a robust approach is developed using single-particle diffusional fingerprinting of quantum dots combined with machine learning to map ECS features in the brain and predict the efficacy of antiviral encephalitis drugs. These results demonstrated that this approach can characterize the microrheology and geometry of the brain ECS at different stages of viral infection and identify subtle changes induced by different drug treatments. This approach provides a potential platform for drug proficiency assessment and is expected to offer a reliable basis for the clinical translation of drugs.


Subject(s)
Antiviral Agents , Encephalitis, Viral , Extracellular Space , Machine Learning , Quantum Dots , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Extracellular Space/metabolism , Animals , Quantum Dots/chemistry , Encephalitis, Viral/drug therapy , Mice , Brain/diagnostic imaging , Brain/pathology , Rheology , Humans
6.
Nano Lett ; 24(5): 1816-1824, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38270101

ABSTRACT

Accurate quantification of exosomal PD-L1 protein in tumors is closely linked to the response to immunotherapy, but robust methods to achieve high-precision quantitative detection of PD-L1 expression on the surface of circulating exosomes are still lacking. In this work, we developed a signal amplification approach based on aptamer recognition and DNA scaffold hybridization-triggered assembly of quantum dot nanospheres, which enables bicolor phenotyping of exosomes to accurately screen for cancers and predict PD-L1-guided immunotherapeutic effects through machine learning. Through DNA-mediated assembly, we utilized two aptamers for simultaneous ultrasensitive detection of exosomal antigens, which have synergistic roles in tumor diagnosis and treatment prediction, and thus, we achieved better sample classification and prediction through machine-learning algorithms. With a drop of blood, we can distinguish between different cancer patients and healthy individuals and predict the outcome of immunotherapy. This approach provides valuable insights into the development of personalized diagnostics and precision medicine.


Subject(s)
Nanospheres , Neoplasms , Quantum Dots , Humans , Early Detection of Cancer , B7-H1 Antigen , Immunotherapy , Machine Learning , Oligonucleotides , DNA
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123733, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38157745

ABSTRACT

Hypochlorite (ClO-) is an important redox regulator in reactive oxygen species, which play a considerable role in oxidative stress and related diseases. Hence, accurate and sensitive monitoring of ClO- concentration was urgently needed in the fields of life sciences, food and environment. Bright green fluorescent carbon quantum dots (G-CQDs) were synthesized utilizing one-step hydrothermal method with citric acid and acriflavine precursors. Through TEM, FTIR, XPS and zeta potential characterization procedures, G-CQDs illustrated uniformly dispersed and significant number of -NH2 and -OH on the surface. Meanwhile, the fluorescence and colorimetric analysis exhibited wide linear range and low detection limit response to ClO-. The fluorescence changes of G-CQDs were identified via smartphone to realize mobile sensing of ClO-. Subsequently, G-CQDs was applied for visualization and quantitative detection of ClO- in drinking water samples with satisfactory recovery rate. More importantly, G-CQDs demonstrated good water solubility, optical stability and excellent biocompatibility, which offered a promising analysis approach in cell imaging and exogenous ClO- detection in living cells. G-CQDs illustrated bright prospect and great potential in practical application of ClO- associated disease prevention and early clinical diagnosis.


Subject(s)
Quantum Dots , Hypochlorous Acid , Carbon , Fluorescence , Solubility
8.
Molecules ; 28(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37513239

ABSTRACT

Sphingomyelin (SM) and its metabolites are crucial regulators of tumor cell growth, differentiation, senescence, and programmed cell death. With the rise in lipid-based nanomaterials, engineered lipidic nanomaterials inspired by SM metabolism, corresponding lipid targeting, and signaling activation have made fascinating advances in cancer therapeutic processes. In this review, we first described the specific pathways of SM metabolism and the roles of their associated bioactive molecules in mediating cell survival or death. We next summarized the advantages and specific applications of SM metabolism-based lipidic nanomaterials in specific cancer therapies. Finally, we discussed the challenges and perspectives of this emerging and promising SM metabolism-based nanomaterials research area.


Subject(s)
Nanostructures , Neoplasms , Humans , Sphingomyelins , Nanostructures/therapeutic use , Neoplasms/drug therapy , Apoptosis , Cell Survival
9.
Angew Chem Int Ed Engl ; 62(34): e202307695, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37394618

ABSTRACT

A family of novel highly π-extended tetracyano-substituted acene diimides, named as tetracyanodiacenaphthoanthracene diimides (TCDADIs), have been synthesized using a facile four-fold Knoevenagel condensation strategy. Unlike conventional cyano substitution reactions, our approach enables access to a large π-conjugated backbone with the in-situ formation of four cyano substitutents at room temperature while avoiding extra cyano-functionalization reactions. TCDADIs decorated with different N-alkyl substituents present good solubility, near-coplanar backbones, good crystallinity, and low-lying lowest unoccupied molecular orbital energies of -4.33 eV, all of which contribute to desirable electron-transport performance when applied in organic field-effect transistors (OFET). The highest electron mobility of an OFET based on a 2-hexyldecyl-substituted TCDADI single crystal reaches 12.6 cm2  V-1 s-1 , which is not only among the highest values for the reported n-type organic semiconductor materials (OSMs) but also exceeds that of most n-type OSMs decorated with imide units.

10.
Angew Chem Int Ed Engl ; 62(33): e202306418, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37316964

ABSTRACT

Two novel N-doped nonalternant nanoribbons (NNNR-1 and NNNR-2) featuring multiple fused N-heterocycles and bulky solubilizing groups were prepared via bottom-up solution synthesis. NNNR-2 achieves a total molecular length of 33.8 Å, which represents the longest soluble N-doped nonalternant nanoribbon reported to date. The pentagon subunits and doping of N atoms in NNNR-1 and NNNR-2 have successfully regulated their electronic properties, achieving high electron affinity and good chemical stability enabled by the nonalternant conjugation and electronic effects. When applied a laser pulse of 532 nm, the 13-rings nanoribbon NNNR-2 shows outstanding nonlinear optical (NLO) responses, with the nonlinear extinction coefficient of 374 cm GW-1 , much higher than those of NNNR-1 (96 cm GW-1 ) and the well-known NLO material C60 (153 cm GW-1 ). Our findings indicate that the N-doping of nonalternant nanoribbons is an effective strategy to access another type of excellent material system for high-performance NLO applications, which can be extended to construct numerous heteroatom-doped nonalternant nanoribbons with fine-tunable electronic properties.

11.
Small ; 19(27): e2207858, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36949014

ABSTRACT

Electrodes are indispensable components in semiconductor devices, and now are mainly made from metals, which are convenient for use but not ideal for emerging technologies such as bioelectronics, flexible electronics, or transparent electronics. Here the methodology of fabricating novel electrodes for semiconductor devices using organic semiconductors (OSCs) is proposed and demonstrated. It is shown that polymer semiconductors can be heavily p- or n-doped to achieve sufficiently high conductivity for electrodes. In contrast with metals, the doped OSC films (DOSCFs) are solution-processable, mechanically flexible, and have interesting optoelectronic properties. By integrating the DOSCFs with semiconductors through van der Waals contacts different kinds of semiconductor devices can be constructed. Importantly, these devices exhibit higher performance than their counterparts with metal electrodes, and/or excellent mechanical or optical properties that are unavailable in metal-electrode devices, suggesting the superiority of DOSCF electrodes. Given the existing large amount of OSCs, the established methodology can provide abundant electrode choices to meet the demand of various emerging devices.

12.
Org Lett ; 25(6): 972-976, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36732283

ABSTRACT

A series of double [4]helicene-like naphthobisbenzothiophene diimides and their thienyl-S,S-dioxidized derivatives are synthesized via MoCl5-catalyzed cyclization and m-CPBA-mediated oxidation reactions. The functional five-membered ring diimides show a helicene-like geometry, strong solid-state fluorescence, and deep LUMO of -4.37 eV.

13.
Arch Ration Mech Anal ; 246(1): 1-60, 2022.
Article in English | MEDLINE | ID: mdl-36164458

ABSTRACT

We show that the local density of states (LDOS) of a wide class of tight-binding models has a weak body-order expansion. Specifically, we prove that the resulting body-order expansion for analytic observables such as the electron density or the energy has an exponential rate of convergence both at finite Fermi-temperature as well as for insulators at zero Fermi-temperature. We discuss potential consequences of this observation for modelling the potential energy landscape, as well as for solving the electronic structure problem.

14.
Angew Chem Int Ed Engl ; 61(39): e202210285, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35965257

ABSTRACT

Viral encephalitis is an inflammatory disease of the brain parenchyma and caused by various viral infections. In vivo monitoring of the progression of viral infections can aid accurate diagnosis of viral encephalitis and effective intervention. We developed an activatable and reversible virus-mimicking near-infrared II nanoprobe consisting of an Fe2+ -coordinated, viral protein-decorated vesicle encapsulating PbS quantum dots with a 1300 nm fluorescence emission. The probe can cross the blood-brain barrier and monitor real-time changes in reactive oxygen and nitrogen species concentrations during viral infection by tuning the quenching level of quantum dots and regulating the fusion-fission behavior of vesicles via changes in Fe oxidation state. This switching strategy reduces background noise and improves detection sensitivity, making this nanoprobe a promising imaging agent for dynamic visualization of viral encephalitis and future clinical applications.


Subject(s)
Encephalitis, Viral , Quantum Dots , Fluorescent Dyes , Humans , Nitrogen , Optical Imaging/methods , Oxygen , Viral Proteins
15.
Angew Chem Int Ed Engl ; 61(36): e202207213, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35838004

ABSTRACT

Low-temperature photothermal therapy (PTT), which circumvents the limitations of conventional PTT (e.g., thermotolerance and adverse effects), is an emerging therapeutic strategy which shows great potential for future clinical applications. The expression of heat shock proteins (HSPs) can dramatically impair the therapeutic efficacy of PTT. Thus, inhibition of HSPs repair and reducing the damage of nearby normal cells is crucial for improving the efficiency of low-temperature PTT. Herein, we developed a nanobomb based on the self-assembly of NIRII AIE polymer PBPTV and carbon monoxide (CO) carrier polymer mPEG(CO). This smart nanobomb can be exploded in a tumor microenvironment in which hydrogen peroxide is overexpressed and release CO into cancer cells to significantly inhibit the expression of HSPs and hence improve the antitumor efficiency of the low-temperature PTT.


Subject(s)
Nanoparticles , Photothermal Therapy , Carbon Monoxide , Cell Line, Tumor , Phototherapy , Polymers , Temperature
16.
Nat Commun ; 13(1): 2898, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35610215

ABSTRACT

Vertical transistors have attracted enormous attention in the next-generation electronic devices due to their high working frequency, low operation voltage and large current density, while a major scientific and technological challenge for high performance vertical transistor is to find suitable source electrode. Herein, an MXene material, Ti3C2Tx, is introduced as source electrode of organic vertical transistors. The porous MXene films take the advantage of both partially shielding effect of graphene and the direct modulation of the Schottky barrier at the mesh electrode, which significantly enhances the ability of gate modulation and reduces the subthreshold swing to 73 mV/dec. More importantly, the saturation of output current which is essential for all transistor-based applications but remains a great challenge for vertical transistors, is easily achieved in our device due to the ultra-thin thickness and native oxidation of MXene, as verified by finite-element simulations. Finally, our device also possesses great potential for being used as wide-spectrum photodetector with fast response speed without complex material and structure design. This work demonstrates that MXene as source electrode offers plenty of opportunities for high performance vertical transistors and photoelectric devices.

17.
Adv Sci (Weinh) ; 9(12): e2105856, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35229493

ABSTRACT

Planar heterojunctions (PHJs) are fundamental building blocks for construction of semiconductor devices. However, fabricating PHJs with solution-processable semiconductors such as organic semiconductors (OSCs) is a challenge. Herein, utilizing the orthogonal solubility and good wettability between CsPbBr3 perovskite quantum dots (PQDs) and OSCs, fabrication of solution-processed PQD/OSC PHJs are reported. The phototransistors based on bilayer PQD/PDVT-10 PHJs show responsivity up to 1.64 × 104 A W-1 , specific detectivity of 3.17 × 1012 Jones, and photosensitivity of 5.33 × 106 when illuminated by 450 nm light. Such high photodetection performance is attributed to efficient charge dissociation and transport, as well as the photogating effect in the PHJs. Furthermore, the tri-layer PDVT-10/PQD/Y6 PHJs are used to construct photodiodes working in self-powered mode, which exhibit broad range photoresponse from ultraviolet to near-infrared, with responsivity approaching 10-1 A W-1 and detectivity over 106 Jones. These results present a convenient and scalable production processes for solution-processed PHJs and show their great potential for optoelectronic applications.

18.
Materials (Basel) ; 16(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36614386

ABSTRACT

The superhydrophobic surface can be prepared by two methods; one is by reducing the surface energy, and the other is by constructing a micro-nano rough structure. To achieve high superhydrophobic performance in terms of durability, the firm combination of hydrophobic coating and substrate is particularly important. Here, we use polydimethylsiloxane (PDMS) as a low surface energy monomer, water-borne polyurethane (WPU) as a dispersing aid, and use high-power ultrasound to disperse PDMS in water to make emulsion. The polyester matrix is etched by atmospheric plasma, dipped in PDMS emulsion, dried, and finally baked to induce PDMS on the surface of polyester fiber to cross-link into film. A series of tests on the self-cleaning polyester fabric prepared by this method show that when the concentration of PDMS is 8 g/L and the mass ratio of PDMS to WPU is 20:1, the water contact angle (WCA) reaches the maximum value of 148.2°, which decreases to 141.5° after 200 times of washing and 138.6° after 5000 times of rubbing. Before and after PDMS coating, the tensile strength of polyester fabric increases from 489.4 N to 536.4 N, and the water vapor transmission decreases from 13,535.7 g/(m2·d) to 12,224.3 g/(m2·d). This research is helpful to the large-scale production of self-cleaning polyester fabric. In the future, on the basis of this research, we will add functional powder to endow self-cleaning polyester fabric with higher hydrophobicity and other properties.

19.
Sensors (Basel) ; 21(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34883953

ABSTRACT

Attention mechanisms have demonstrated great potential in improving the performance of deep convolutional neural networks (CNNs). However, many existing methods dedicate to developing channel or spatial attention modules for CNNs with lots of parameters, and complex attention modules inevitably affect the performance of CNNs. During our experiments of embedding Convolutional Block Attention Module (CBAM) in light-weight model YOLOv5s, CBAM does influence the speed and increase model complexity while reduce the average precision, but Squeeze-and-Excitation (SE) has a positive impact in the model as part of CBAM. To replace the spatial attention module in CBAM and offer a suitable scheme of channel and spatial attention modules, this paper proposes one Spatio-temporal Sharpening Attention Mechanism (SSAM), which sequentially infers intermediate maps along channel attention module and Sharpening Spatial Attention (SSA) module. By introducing sharpening filter in spatial attention module, we propose SSA module with low complexity. We try to find a scheme to combine our SSA module with SE module or Efficient Channel Attention (ECA) module and show best improvement in models such as YOLOv5s and YOLOv3-tiny. Therefore, we perform various replacement experiments and offer one best scheme that is to embed channel attention modules in backbone and neck of the model and integrate SSAM into YOLO head. We verify the positive effect of our SSAM on two general object detection datasets VOC2012 and MS COCO2017. One for obtaining a suitable scheme and the other for proving the versatility of our method in complex scenes. Experimental results on the two datasets show obvious promotion in terms of average precision and detection performance, which demonstrates the usefulness of our SSAM in light-weight YOLO models. Furthermore, visualization results also show the advantage of enhancing positioning ability with our SSAM.


Subject(s)
Neural Networks, Computer , Research Design
20.
Chem Commun (Camb) ; 57(63): 7822-7825, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34278400

ABSTRACT

A series of novel bis-acenaphthoquinone diimides featuring a highly electron-deficient bis-acenaphthoquinone core are facilely synthesized via Knoevenagel condensation reaction. The diimides show high electron deficiency and good coplanar conformation, together with one of them having a maximum electron mobility up to 0.038 cm2 V-1 s-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...