Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 342
Filter
1.
Insights Imaging ; 15(1): 136, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853188

ABSTRACT

OBJECTIVE: To investigate the value of Dixon magnetic resonance imaging (MRI)-based quantitative parameters of extraocular muscles (EOMs), intraorbital fat (IF), and lacrimal glands (LGs) in staging patients with thyroid-associated ophthalmopathy (TAO). METHODS: Two hundred patients with TAO (211 active and 189 inactive eyes) who underwent Dixon MRI for pretreatment evaluation were retrospectively enrolled and divided into training (169 active and 151 inactive eyes) and validation (42 active and 38 inactive eyes) cohorts. The maximum, mean, and minimum values of the signal intensity ratio (SIR), fat fraction (FF), and water fraction (WF) of EOMs, IF, and LGs were measured and compared between the active and inactive groups in the training cohort. Binary logistic regression analysis, receiver operating characteristic curve analysis, and the Delong test were used for further statistical analyses, as appropriate. RESULTS: Compared with inactive TAOs, active TAOs demonstrated significantly greater EOM-SIRmax, EOM-SIRmean, EOM-SIRmin, IF-SIRmax, IF-SIRmean, LG-SIRmax, LG-SIRmean, EOM-WFmean, EOM-WFmin, IF-WFmax, IF-WFmean, and LG-WFmean and lower EOM-FFmax, EOM-FFmean, IF-FFmean, IF-FFmin, and LG-FFmean values (all p < 0.05). The EOM-SIRmean, LG-SIRmean, and LG-FFmean values were independently associated with active TAO (all p < 0.05). The combination of the EOM-SIRmean, LG-SIRmean, and LG-FFmean values showed better performance than the EOM-SIRmean value alone in staging TAO in both the training (AUC, 0.820 vs 0.793; p = 0.016) and validation (AUC, 0.751 vs 0.733, p = 0.341) cohorts. CONCLUSION: Dixon MRI-based parameters of EOMs, LGs, and IF are useful for differentiating active from inactive TAO. The integration of multiple parameters can further improve staging performance. CRITICAL RELEVANCE STATEMENT: In this study, the authors explored the combined value of quantitative parameters of EOMs, IF, and LGs derived from Dixon MRI in staging TAO patients, which can support the establishment of a proper therapeutic plan. KEY POINTS: The quantitative parameters of EOMs, LGs, and IF are useful for staging TAO. The EOM-SIRmean, LG-SIRmean, and LG-FFmean values were found to independently correlate with active TAO. Joint evaluation of orbital tissue improved the ability to assess TAO activity.

2.
Mitochondrial DNA B Resour ; 9(5): 592-596, 2024.
Article in English | MEDLINE | ID: mdl-38716393

ABSTRACT

Species in the Amorphophallus genus are important cash crops in many tropical and subtropical Asian countries. Although several molecular markers have been employed to determine relationships and assess genetic variation in the Amorphophallus genus, some conflicts remain in infrageneric classification and evolution. To aid in the phylogenetic research of the Amorphophallus genus, we collected one sample of Amorphophallus tonkinensis Engler and Gehrmann 1911 from southwestern China. We assembled the first chloroplast genome of this species using high-throughput sequencing. The assembled genome was 169,341 bp long with a typical quadripartite structure (GenBank accession number: PP234804). The lengths of the large single-copy region, small single-copy region, and two inverted repeats were 90,705 bp, 15,640 bp, 31,498 bp, and 31,498 bp, respectively. We annotated 129 genes across the chloroplast genome of A. tonkinensis. The phylogenetic trees suggested that the Amorphophallus species distributed in continental Asia split into two main clades. The chloroplast genome reported in our study provided valuable genomic resources for the future phylogenetic research of the Amorphophallus genus.

3.
Int Immunopharmacol ; 134: 112255, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744176

ABSTRACT

Inflammatory bowel disease (IBD) is distinguished by persistent immune-mediated inflammation of the gastrointestinal tract. Previous experimental investigations have shown encouraging outcomes for the use of mesenchymal stem cell (MSC)-based therapy in the treatment of IBD. However, as a primary medication for IBD patients, there is limited information regarding the potential interaction between 5-aminosalicylates (5-ASA) and MSCs. In this present study, we employed the dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model to examine the influence of a combination of MSCs and 5-ASA on the development of UC. The mice were subjected to weight measurement, DAI scoring, assessment of calprotectin expression, and collection of colons for histological examination. The findings revealed that both 5-ASA and MSCs have demonstrated efficacy in the treatment of UC. However, it is noteworthy that 5-ASA exhibits a quicker onset of action, while MSCs demonstrate more advantageous and enduring therapeutic effects. Additionally, the combination of 5-ASA and MSC treatment shows a less favorable efficacy compared to the MSCs alone group. Moreover, our study conducted in vitro revealed that 5-ASA could promote MSC migration, but it could also inhibit MSC proliferation, induce apoptosis, overexpress inflammatory factors (IL-2, IL-12P70, and TNF-α), and reduce the expression of PD-L1 and PD-L2. Furthermore, a significant decrease in the viability of MSCs within the colon was observed as a result of 5-ASA induction. These findings collectively indicate that the use of 5-ASA has the potential to interfere with the therapeutic efficacy of MSC transplantation for the treatment of IBD.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Mesalamine , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Colitis, Ulcerative/therapy , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Mesalamine/pharmacology , Mesalamine/therapeutic use , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Humans , Mice, Inbred C57BL , Colon/pathology , Colon/drug effects , Colon/immunology , Cells, Cultured , Male , Cell Proliferation/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
5.
Chem Biomed Imaging ; 2(5): 331-344, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817319

ABSTRACT

The introduction of super-resolution microscopy (SRM) has significantly advanced our understanding of cellular and molecular dynamics, offering a detailed view previously beyond our reach. Implementing SRM in biophysical research, however, presents numerous challenges. This review addresses the crucial aspects of utilizing SRM effectively, from selecting appropriate fluorophores and preparing samples to analyzing complex data sets. We explore recent technological advancements and methodological improvements that enhance the capabilities of SRM. Emphasizing the integration of SRM with other analytical methods, we aim to overcome inherent limitations and expand the scope of biological insights achievable. By providing a comprehensive guide for choosing the most suitable SRM methods based on specific research objectives, we aim to empower researchers to explore complex biological processes with enhanced precision and clarity, thereby advancing the frontiers of biophysical research.

6.
Mol Psychiatry ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816584

ABSTRACT

As the most prescribed psychotropic drugs in current medical practice, antidepressant drugs (ADs) of the selective serotonin reuptake inhibitor (SSRI) class represent prime candidates for drug repurposing. The mechanisms underlying their mode of action, however, remain unclear. Here, we show that common SSRIs and selected representatives of other AD classes bidirectionally regulate fluid-phase uptake at therapeutic concentrations and below. We further characterize membrane trafficking induced by a canonical SSRI fluvoxamine to show that it involves enhancement of clathrin-mediated endocytosis, endosomal system, and exocytosis. RNA sequencing analysis showed few fluvoxamine-associated differences, consistent with the effect being independent of gene expression. Fluvoxamine-induced increase in membrane trafficking boosted transcytosis in cell-based blood-brain barrier models, while a single injection of fluvoxamine was sufficient to enable brain accumulation of a fluid-phase fluorescent tracer in vivo. These findings reveal modulation of membrane trafficking by ADs as a possible cellular mechanism of action and indicate their clinical repositioning potential for regulating drug delivery to the brain.

7.
J Hazard Mater ; 469: 133871, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38428301

ABSTRACT

Due to the typical volatility of gaseous pollutant methyl mercaptan (CH3SH), the development of a facile, reliable, and accurate onsite environmental surveillance of highly toxic CH3SH faces many challenges, but it is critical to environmental atmosphere assessment and safeguarding public health. Here, we prepared a novel bimetallic carbon dots (Fe&Cu@CDs) nanozyme with high peroxidase-mimicking activity to design a portable hydrogel kit for onsite visual H2O2-self-supplying enzymatic cascade catalytic colorimetric and photothermal signal synergistic amplification dual-modal monitoring of CH3SH in atmospheric environment. Assisted by alcohol oxidase (AOX), CH3SH could be specifically converted into H2O2 for oxidizing chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by Fe&Cu@CDs to produce dark blue ox-TMB with absorption at 652 nm and photothermal characters. Consequently, a CH3SH concentration-dependent change both in naked-eye color and photothermal effect-triggered temperature were observed. By hybridizing AOX-assisted Fe&Cu@CDs + TMB with agarose, a H2O2-self-supplying colorimetric and photothermal signal synergistic amplification sensory hydrogel kit integrated with Color Picker APP-installed smartphone and 660 nm laser-equipped handheld thermal imager for CH3SH was proposed with acceptable results in atmospheric environment around wastepile (e.g., solid waste and food waste piles), which exhibited great potentials to further develop commercial onsite monitoring platforms in warning-early abnormal atmospheric CH3SH for safeguarding environmental health.


Subject(s)
Hydrogen Peroxide , Refuse Disposal , Carbon , Hydrogels , Food , Colorimetry/methods
8.
Article in English | MEDLINE | ID: mdl-38498926

ABSTRACT

OBJECTIVES: This study aimed to investigate radiomics based on primary nonsmall-cell lung cancer (NSCLC) and distant metastases to predict epidermal growth factor receptor (EGFR) mutation status. METHODS: A total of 290 patients (mean age, 58.21 ± 9.28) diagnosed with brain (BM, n = 150) or spinal bone metastasis (SM, n = 140) from primary NSCLC were enrolled as a primary cohort. An external validation cohort, consisting of 69 patients (mean age, 59.87 ± 7.23; BM, n = 36; SM, n = 33), was enrolled from another center. Thoracic computed tomography-based features were extracted from the primary tumor and peritumoral area and selected using the least absolute shrinkage and selection operator regression to build a radiomic signature (RS-primary). Contrast-enhanced magnetic resonance imaging-based features were calculated and selected from the BM and SM to build RS-BM and RS-SM, respectively. The RS-BM-Com and RS-SM-Com were developed by integrating the most important features from the primary tumor, BM, and SM. RESULTS: Six computed tomography-based features showed high association with EGFR mutation status: 3 from intratumoral and 3 from peritumoral areas. By combination of features from primary tumor and metastases, the developed RS-BM-Com and RS-SM-Com performed well with areas under curve in the training (RS-BM-Com vs RS-BM, 0.936 vs 0.885, P = 0.177; RS-SM-Com vs RS-SM, 0.929 vs 0.843, P = 0.003), internal validation (RS-BM-Com vs RS-BM, 0.920 vs 0.858, P = 0.492; RS-SM-Com vs RS-SM, 0.896 vs 0.859, P = 0.379), and external validation (RS-BM-Com vs RS-BM, 0.882 vs 0.805, P = 0.263; RS-SM-Com vs RS-SM, 0.865 vs 0.816, P = 0.312) cohorts. CONCLUSIONS: This study indicates that the accuracy of detecting EGFR mutations significantly enhanced in the presence of metastases in primary NSCLC. The established radiomic signatures from this approach may be useful as new predictors for patients with distant metastases.

9.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38539803

ABSTRACT

Citrus is mainly cultivated in acid soil with low boron (B) and high copper (Cu). In this study, Citrus sinensis seedlings were submitted to 0.5 (control) or 350 µM Cu (Cu excess or Cu exposure) and 2.5, 10, or 25 µM B for 24 weeks. Thereafter, H2O2 production rate (HPR), superoxide production rate (SAPR), malondialdehyde, methylglyoxal, and reactive oxygen species (ROS) and methylglyoxal detoxification systems were measured in leaves and roots in order to test the hypothesis that B addition mitigated Cu excess-induced oxidative damage in leaves and roots by reducing the Cu excess-induced formation and accumulation of ROS and MG and by counteracting the impairments of Cu excess on ROS and methylglyoxal detoxification systems. Cu and B treatments displayed an interactive influence on ROS and methylglyoxal formation and their detoxification systems. Cu excess increased the HPR, SAPR, methylglyoxal level, and malondialdehyde level by 10.9% (54.3%), 38.9% (31.4%), 50.3% (24.9%), and 312.4% (585.4%), respectively, in leaves (roots) of 2.5 µM B-treated seedlings, while it only increased the malondialdehyde level by 48.5% (97.8%) in leaves (roots) of 25 µM B-treated seedlings. Additionally, B addition counteracted the impairments of Cu excess on antioxidant enzymes, ascorbate-glutathione cycle, sulfur metabolism-related enzymes, sulfur-containing compounds, and methylglyoxal detoxification system, thereby protecting the leaves and roots of Cu-exposed seedlings against oxidative damage via the coordinated actions of ROS and methylglyoxal removal systems. Our findings corroborated the hypothesis that B addition alleviated Cu excess-induced oxidative damage in leaves and roots by decreasing the Cu excess-induced formation and accumulation of ROS and MG and by lessening the impairments of Cu excess on their detoxification systems. Further analysis indicated that the pathways involved in the B-induced amelioration of oxidative stress caused by Cu excess differed between leaves and roots.

10.
Stem Cells ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38469899

ABSTRACT

Wnt/ß-catenin signaling plays a crucial role in the migration of mesenchymal stem cells (MSCs). However, our study has revealed an intriguing phenomenon where DKK1, an inhibitor of Wnt/ß-catenin signaling, promotes MSC migration at certain concentrations ranging from 25 ng/ml to 100 ng/ml, while inhibiting Wnt3a-induced MSC migration at a higher concentration (400 ng/ml). Interestingly, DKK1 consistently inhibited Wnt3a-induced phosphorylation of LRP6 at all concentrations. We further identified CKAP4, another DKK1 receptor, to be localized on the cell membrane of MSCs. Overexpressing the CRD2 deletion mutant of DKK1 (ΔCRD2), which selectively binds to CKAP4, promoted the accumulation of active ß-catenin (ABC), the phosphorylation of AKT (Ser473) and the migration of MSCs, suggesting that DKK1 may activate Wnt/ß-catenin signaling via the CKAP4/PI3K/AKT cascade. We also investigated the effect of the CKAP4 intracellular domain mutant (CKAP4-P/A) that failed to activate the PI3K/AKT pathway, and found that CKAP4-P/A suppressed DKK1 (100 ng/ml)-induced AKT activation, ABC accumulation, and MSC migration. Moreover, CKAP4-P/A significantly weakened the inhibitory effects of DKK1 (400 ng/ml) on Wnt3a-induced MSC migration and Wnt/ß-catenin signaling. Based on these findings, we propose that DKK1 may activate the PI3K/AKT pathway via CKAP4 to balance the inhibitory effect on Wnt/ß-catenin signaling and thus regulate Wnt3a-induced migration of MSCs. Our study reveals a previously unrecognized role of DKK1 in regulating MSC migration, highlighting the importance of CKAP4 and PI3K/AKT pathway in this process.

11.
Commun Biol ; 7(1): 262, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438714

ABSTRACT

Potassium Channel Tetramerization Domain Containing 15 (KCTD15) participates in the carcinogenesis of several solid malignancies; however, its role in colorectal cancer (CRC) remains unclear. Here we find that KCTD15 exhibits lower expression in CRC tissues as compared to para-carcinoma tissues. Tetracycline (tet)-induced overexpression and knockdown of KCTD15 confirms KCTD15 as an anti-proliferative and pro-apoptotic factor in CRC both in vitro and in xenografted tumors. N6-methyladenosine (m6A) is known to affect the expression, stabilization, and degradation of RNAs with this modification. We demonstrate that upregulation of fat mass and obesity-associated protein (FTO), a classical m6A eraser, prevents KCTD15 mRNA degradation in CRC cells. Less KCTD15 RNA is recognized by m6A 'reader' YTH N6-Methyladenosine RNA Binding Protein F2 (YTHDF2) in FTO-overexpressed cells. Moreover, KCTD15 overexpression decreases protein expression of histone deacetylase 1 (HDAC1) but increases acetylation of critical tumor suppressor p53 at Lys373 and Lys382. Degradation of p53 is delayed in CRC cells post-KCTD15 overexpression. We further show that the regulatory effects of KCTD15 on p53 are HDAC1-dependent. Collectively, we conclude that KCTD15 functions as an anti-growth factor in CRC cells, and its expression is orchestrated by the FTO-YTHDF2 axis. Enhanced p53 protein stabilization may contribute to KCTD15's actions in CRC cells.


Subject(s)
Adenine/analogs & derivatives , Carcinoma , Colorectal Neoplasms , Humans , Tumor Suppressor Protein p53 , Carcinogenesis , Colorectal Neoplasms/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Potassium Channels , RNA-Binding Proteins/genetics
12.
mBio ; 15(3): e0334923, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38385695

ABSTRACT

CRF01_AE strains have been shown to form multiple transmission clusters in China, and some clusters have disparate pathogenicity in Chinese men who have sex with men. This study focused on other CRF01_AE clusters prevalent in heterosexual populations. The CD4+ T-cell counts from both cross-section data in National HIV Molecular Epidemiology Survey and seropositive cohort data were used to evaluate the pathogenicity of the CRF01_AE clusters and other HIV-1 sub-types. Their mechanisms of pathogenicity were evaluated by co-receptor tropisms, predicted by genotyping and confirmed with virus isolate phenotyping, as well as inflammation parameters. Our research elucidated that individuals infected with CRF01_AE clusters 1 and 2 exhibited significantly lower baseline CD4+ T-cell counts and greater CD4+ T-cell loss in cohort follow-up, compared with other HIV-1 sub-types and CRF01_AE clusters. The increased pathogenesis of cluster 1 or 2 was associated with higher CXCR4 tropisms, higher inflammation/immune activation, and increased pyroptosis. The protein structure modeling analysis revealed that the envelope V3 loop of clusters 1 and 2 viruses is favorable for CXCR4 co-receptor usage. Imbedded with the most mutating reverse transcriptase, HIV-1 is one of the most variable viruses. CRF01_AE clusters 1 and 2 have been found to have evolved into more virulent strains in regions with predominant heterosexual infections. The virulent strains increased the pressure for early diagnosis and treatment in HIV patients. To save more lives, HIV-1 surveillance systems should be upgraded from serology and genotyping to phenotyping, which could support precision interventions for those infected by virulent viruses. IMPORTANCE: Retroviruses swiftly adapt, employing error-prone enzymes for genetic and phenotypic evolution, optimizing survival strategies, and enhancing virulence levels. HIV-1 CRF01_AE has persistently undergone adaptive selection, and cluster 1 and 2 infections display lower counts and fast loss of CD4+ T cells than other HIV-1 sub-types and CRF01_AE clusters. Its mechanisms are associated with increased CXCR4 tropism due to an envelope structure change favoring a tropism shift from CCR5 to CXCR4, thereby shaping viral phenotype features and impacting pathogenicity. This underscores the significance of consistently monitoring HIV-1 genetic evolution and phenotypic transfer to see whether selection bias across risk groups alters the delicate balance of transmissible versus toxic trade-offs, since virulent strains such as CRF01_AE clusters 1 and 2 could seriously compromise the efficacy of antiviral treatment. Only through such early warning and diagnostic services can precise antiviral treatments be administered to those infected with more virulent HIV-1 strains.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Sexual and Gender Minorities , Male , Humans , HIV-1/genetics , Homosexuality, Male , Genotype , CD4-Positive T-Lymphocytes , China/epidemiology , Inflammation , Antiviral Agents , Phylogeny
13.
Heliyon ; 10(2): e24394, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312638

ABSTRACT

SIVA-1 has been shown to affect apoptotic processes in various different cell lines, and SIVA-1 significantly contributes to the decreased responsiveness of cancer cells to some chemotherapy agents. However, whether SIVA-1 has potential application in gastric cancer remains unknown. Therefore, the objective of this investigation was to clarify the distinct function of SIVA-1 in chemotherapeutic drug resistance within a living murine model with gastric malignancy, and initially elucidate the underlying mechanisms. In an established multidrug-resistant gastric cancer xenograft mouse model, lentivirus, named Lv-SIVA-1, was injected into xenograft tumors, and increased the mRNA and protein expression of endogenous SIVA-1 in tumors. Immunohistochemical assays of xenograft tumor showed that SIVA-1 was significantly upregulated, and the protein expression levels of SIVA-1 were highly increased, as detected by Western blotting. In addition, we detected the role of SIVA-1 in cell proliferation and cell apoptosis in gastric cancer cells by TUNEL and found that SIVA-1 decreased tumor cell apoptosis and promoted tumor growth in vivo. Using a TMT assay between tumor tissues of experimental and control groups, differentially expressed proteins were examined and three potential biomarkers of multidrug resistance (ARF, MDM2, and p53) were screened. We further investigated the molecular mechanism by which SIVA-1 played an efficient role against chemotherapies and found that overexpressed SIVA-1 leads to increased ARF and MDM2 expression and suppressed expression of p53 in tumor tissue. In conclusion, SIVA-1 plays a significant role in the multidrug resistance of gastric tumors. In addition, overexpressed SIVA-1 positively regulates cell proliferation, adjusts cycle progression, and reduces the response to drug treatment for gastric cancer in an ARF/MDM2/p53-dependent manner. This novel research provides a basis for chemical management of gastric cancer through regulation of SIVA-1 expression.

14.
Article in English | MEDLINE | ID: mdl-38298177

ABSTRACT

CONTEXT: Dysthyroid optic neuropathy (DON) is a serious vision-threatening complication of thyroid-associated ophthalmopathy (TAO). Exploration of the underlying mechanisms of DON is critical for its timely clinical diagnosis. OBJECTIVE: We hypothesized that TAO patients with DON may have altered brain functional networks. We aimed to explore the alterations of static and dynamic functional connectomes in patients with and without DON using resting-state functional MRI with graph theory method. DESIGN: A cross-sectional study. SETTING: Grade A tertiary hospital. PARTICIPANTS: Sixty-six TAO patients (28 DON and 38 non-DON) and 30 healthy controls (HCs). MAIN OUTCOME MEASURES: Topological properties of functional networks. RESULTS: For static properties, DON patients exhibited lower global efficiency (Eg), local efficiency, normalized clustering coefficient, small-worldness (σ), and higher characteristic path length (Lp) than HCs. Both DON and non-DON patients exhibited varying degrees of abnormalities in nodal properties. Meanwhile, compared with non-DON, DON patients exhibited abnormalities in nodal properties in orbitofrontal cortex and visual network (VN). For dynamic properties, DON group exhibited higher variance in Eg and Lp than non-DON and HC groups. A strengthened subnetwork with VN as the core was identified in DON cohort. Significant correlations were found between network properties and clinical variables. For distinguishing DON, the combination of static and dynamic network properties exhibited optimal diagnostic performance. CONCLUSION: Functional network alterations were observed in both DON and non-DON patients, providing novel insights into the underlying neural mechanisms of disease. Functional network properties may be potential biomarkers for reflecting the progression of TAO from non-DON to DON.

15.
BMJ Open ; 14(2): e078694, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38401895

ABSTRACT

OBJECTIVES: To evaluate the diagnostic performance of urine HIV antibody rapid test kits in screening diverse populations and to analyse subjects' willingness regarding reagent types, purchase channels, acceptable prices, and self-testing. DESIGNS: Diagnostic accuracy studies PARTICIPANTS: A total of 2606 valid and eligible samples were collected in the study, including 202 samples from female sex workers (FSWs), 304 persons with injection drug use (IDU), 1000 pregnant women (PW), 100 subjects undergoing voluntary HIV counselling and testing (VCT) and 1000 students in higher education schools or colleges (STUs). Subjects should simultaneously meet the following inclusion criteria: (1) being at least 18 years old and in full civil capacity, (2) signing an informed consent form and (3) providing truthful identifying information to ensure that the subjects and their samples are unique. RESULTS: The sensitivity, specificity and area under the curve (AUC) of the urine HIV-1 antibody rapid test kits were 92.16%, 99.92% and 0.960 (95% CI: 0.952 to 0.968, p<0.001), respectively, among 2606 samples collected during on-site screenings. The kits showed good diagnostic performance in persons with IDU (AUC, 1.000; 95% CI, 1.000 to 1.000, p<0.001), PW (AUC, 0.999; 95% CI, 0.999 to 1.000, p<0.001) and FSWs (AUC, 1.000; 95% CI, 1.000 to 1.000, p<0.001). The AUC of the urine reagent kits in subjects undergoing VCT was 0.941 (95% CI: 0.876 to 0.978, p<0.001). The 'acceptable price' had the greatest influence on STUs (Pi=1.000) and PW (Pi=1.000), the 'purchase channel' had the greatest influence on subjects undergoing VCT (Pi=1.000) and persons with IDU (Pi=1.000) and the 'reagent types' had the greatest influence on FSWs (Pi=1.000). CONCLUSIONS: The rapid urine test kits showed good diagnostic validity in practical applications, despite a few cases involving misdiagnosis and underdiagnosis.


Subject(s)
HIV Infections , HIV-1 , Sex Workers , Pregnancy , Female , Humans , Adolescent , HIV Infections/diagnosis , HIV Infections/prevention & control , HIV Antibodies , Reagent Kits, Diagnostic
16.
J Hazard Mater ; 467: 133738, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38350317

ABSTRACT

Little information is available on how boron (B) supplementation affects plant cell wall (CW) remodeling under copper (Cu) excess. 'Xuegan' (Citrus sinensis) seedlings were submitted to 0.5 or 350 µM Cu × 2.5 or 25 µM B for 24 weeks. Thereafter, we determined the concentrations of CW materials (CWMs) and CW components (CWCs), the degree of pectin methylation (DPM), and the pectin methylesterase (PME) activities and PME gene expression levels in leaves and roots, as well as the Cu concentrations in leaves and roots and their CWMs (CWCs). Additionally, we analyzed the Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra of leaf and root CWMs. Our findings suggested that adding B reduced the impairment of Cu excess to CWs by reducing the Cu concentrations in leaves and roots and their CWMs and maintaining the stability of CWs, thereby improving leaf and root growth. Cu excess increased the Cu fractions in leaf and root pectin by decreasing DPM due to increased PME activities, thereby contributing to citrus Cu tolerance. FTIR and XRD indicated that the functional groups of the CW pectin, hemicellulose, cellulose, and lignin could bind and immobilize Cu, thereby reducing Cu cytotoxicity in leaves and roots.


Subject(s)
Citrus sinensis , Boron/toxicity , Copper/toxicity , Seedlings , Cell Wall , Plant Leaves , Pectins/pharmacology
17.
Eur Thyroid J ; 13(1)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38236726

ABSTRACT

Purpose: The aim was to determine the combined value of serological lipid metabolism and an orbital MRI quantitative parameter in predicting the effectiveness of glucocorticoid (GC) therapy in patients with thyroid eye disease (TED). Methods: This study retrospectively enrolled 46 patients with active and moderate-to-severe TED (GC-effective group, n = 29; GC-ineffective group, n = 17). Serological lipid metabolism, the orbital MRI-based minimum signal intensity ratio of extraocular muscles (EOM-SIRmin), as well as other clinical parameters before GC therapy were collected and compared between the two groups. Multivariate logistic regression and receiver operating characteristic curve analysis were adopted to identify independent predictable variables and assess their predictive performances. Results: Compared to the GC-ineffective group, the GC-effective group showed lower serum total cholesterol levels (P = 0.006), lower serum low-density lipoprotein cholesterol levels (P = 0.019), higher EOM-SIRmin values (P = 0.005), and shorter disease durations (P = 0.017). Serum total cholesterol and EOM-SIRmin were found to be independent predictors of GC-effective TED through multivariate analysis (odds ratios = 0.253 and 2.036 per 0.1 units, respectively) (both P < 0.05). The integration of serum total cholesterol ≤4.8 mmol/L and EOM-SIRmin ≥ 1.12 had a better predictive efficacy (area under the curve, 0.834) than EOM-SIRmin alone, with a sensitivity of 75.9% and a specificity of 82.4% (P = 0.031). Conclusion: Serological lipid metabolism, combined with an orbital MRI-derived parameter, was a useful marker for predicting the effectiveness of GCs in patients with active and moderate-to-severe TED.


Subject(s)
Graves Ophthalmopathy , Humans , Graves Ophthalmopathy/diagnostic imaging , Glucocorticoids/therapeutic use , Retrospective Studies , Lipid Metabolism , Magnetic Resonance Imaging , Cholesterol
18.
Eur Radiol ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38276980

ABSTRACT

OBJECTIVES: To evaluate the combined performance of orbital MRI and intracranial visual pathway diffusion kurtosis imaging (DKI) in diagnosing dysthyroid optic neuropathy (DON). METHODS: We retrospectively enrolled 61 thyroid-associated ophthalmopathy (TAO) patients, including 25 with DON (40 eyes) and 36 without DON (72 eyes). Orbital MRI-based apical muscle index (MI), diameter index (DI) of the optic nerve (ON), area index (AI) of the ON, apparent diffusion coefficient (ADC) and signal intensity ratio (SIR) of the ON, DKI-based kurtosis fractional anisotropy (KFA) and mean kurtosis (MK) of the optic tract (OT), optic radiation (OR), and Brodmann areas (BAs) 17, 18, and 19 were measured and compared between groups. The diagnostic performances of models were evaluated using receiver operating characteristic curve analyses and compared using the DeLong test. RESULTS: TAO patients with DON had significantly higher apical MI, apical AI, and SIR of the ON, but significantly lower ADC of the ON than those without DON (p < 0.05). Meanwhile, the DON group exhibited significantly lower KFA across the OT, OR, BA17, BA18, and BA19 and lower MK at the OT and OR than the non-DON group (p < 0.05). The model integrating orbital MRI and intracranial visual pathway DKI parameters performed the best in diagnosing DON (AUC = 0.926), with optimal diagnostic sensitivity (80%) and specificity (94.4%), followed by orbital MRI combination (AUC = 0.890), and then intracranial visual pathway DKI combination (AUC = 0.832). CONCLUSION: Orbital MRI and intracranial visual pathway DKI can both assist in diagnosing DON. Combining orbital and intracranial imaging parameters could further optimize diagnostic efficiency. CLINICAL RELEVANCE STATEMENT: The novel finding could bring novel insights into the precise diagnosis and treatment of dysthyroid optic neuropathy, accordingly, contributing to the improvement of the patients' prognosis and quality of life in the future. KEY POINTS: • Orbital MRI and intracranial visual pathway diffusion kurtosis imaging can both assist in diagnosing dysthyroid optic neuropathy. • Combining orbital MRI and intracranial visual pathway diffusion kurtosis imaging optimized the diagnostic efficiency of dysthyroid optic neuropathy.

19.
Med Phys ; 51(2): 1083-1091, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37408393

ABSTRACT

BACKGROUND: Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non-small-cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision-making. PURPOSE: To explore the value of tumor-liver interface (TLI)-based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM. METHODS: This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast-enhanced T1-weighted (CET1) and T2-weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS-TLI) and the whole tumor (RS-W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis. RESULTS: A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS-TLI showed better prediction performance than RS-W in the training (AUCs, RS-TLI vs. RS-W, 0.842 vs. 0.797), internal validation (AUCs, RS-TLI vs. RS-W, 0.771 vs. 0.676) and external validation (AUCs, RS-TLI vs. RS-W, 0.733 vs. 0.679) cohort. CONCLUSION: Our study demonstrated that TLI-based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi-parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Liver Neoplasms , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Retrospective Studies , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Magnetic Resonance Imaging/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , ErbB Receptors/genetics , Mutation
20.
Small ; 20(4): e2306634, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37702138

ABSTRACT

Chemically inert organic networks exhibiting electrical conductivity comparable to metals can advance organic electronics, catalysis, and energy storage systems. Covalent-organic frameworks (COFs) have emerged as promising materials for those applications due to their high crystallinity, porosity, and tunable functionality. However, their low conductivity has limited their practical utilization. In this study, copper-coordinated-fluorinated-phthalocyanine and 2,3,6,7-tetrahydroxy-9,10-anthraquinone-based COF (CuPc-AQ-COF) films with ultrahigh conductivity are developed. The COF films exhibit an electrical conductivity of 1.53 × 103 S m-1 and a Hall mobility of 6.02 × 102 cm2 V-1 s-1 at 298 K, reaching the level of metals. The films are constructed by linking phthalocyanines and anthraquinones through vapor-assisted synthesis. The high conductivity properties of the films are attributed to the molecular design of the CuPc-AQ-COFs and the generation of high-quality crystals via the vapor-assisted method. Density functional theory analysis reveals that an efficient donor-acceptor system between the copper-coordinated phthalocyanines and anthraquinones significantly promotes charge transfer. Overall, the CuPc-AQ-COF films set new records of COF conductivity and mobility and represent a significant step forward in the development of COFs for electronic, catalytic, and electrochemical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...