Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
World J Gastrointest Surg ; 16(1): 134-142, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328315

ABSTRACT

BACKGROUND: Non-surgical methods such as percutaneous drainage are crucial for the treatment of patients with severe acute pancreatitis (SAP). However, there is still an ongoing debate regarding the optimal timing for abdominal paracentesis catheter placement and drainage. AIM: To explore the influence of different timing for abdominal paracentesis catheter placement and drainage in SAP complicated by intra-abdominal fluid accumulation. METHODS: Using a retrospective approach, 184 cases of SAP complicated by intra-abdominal fluid accumulation were enrolled and categorized into three groups based on the timing of catheter placement: group A (catheter placement within 2 d of symptom onset, n = 89), group B (catheter placement between days 3 and 5 after symptom onset, n = 55), and group C (catheter placement between days 6 and 7 after symptom onset, n = 40). The differences in progression rate, mortality rate, and the number of cases with organ dysfunction were compared among the three groups. RESULTS: The progression rate of group A was significantly lower than those in groups B and groups C (2.25% vs 21.82% and 32.50%, P < 0.05). Further, the proportion of patients with at least one organ dysfunction in group A was significantly lower than those in groups B and groups C (41.57% vs 70.91% and 75.00%, P < 0.05). The mortality rates in group A, group B, and group C were similar (P > 0.05). At postoperative day 3, the levels of C-reactive protein (55.41 ± 19.32 mg/L vs 82.25 ± 20.41 mg/L and 88.65 ± 19.14 mg/L, P < 0.05), procalcitonin (1.36 ± 0.51 ng/mL vs 3.20 ± 0.97 ng/mL and 3.41 ± 0.98 ng/mL, P < 0.05), tumor necrosis factor-alpha (15.12 ± 6.63 pg/L vs 22.26 ± 9.96 pg/L and 23.39 ± 9.12 pg/L, P < 0.05), interleukin-6 (332.14 ± 90.16 ng/L vs 412.20 ± 88.50 ng/L and 420.08 ± 87.65ng/L, P < 0.05), interleukin-8 (415.54 ± 68.43 ng/L vs 505.80 ± 66.90 ng/L and 510.43 ± 68.23ng/L, P < 0.05) and serum amyloid A (270.06 ± 78.49 mg/L vs 344.41 ± 81.96 mg/L and 350.60 ± 80.42 mg/L, P < 0.05) were significantly lower in group A compared to those in groups B and group C. The length of hospital stay in group A was significantly lower than those in groups B and group C (24.50 ± 4.16 d vs 35.54 ± 6.62 d and 38.89 ± 7.10 d, P < 0.05). The hospitalization expenses in group A were also significantly lower than those in groups B and groups C [2.70 (1.20, 3.55) ten-thousand-yuan vs 5.50 (2.98, 7.12) ten-thousand-yuan and 6.00 (3.10, 8.05) ten-thousand-yuan, P < 0.05). The incidence of complications in group A was markedly lower than that in group C (5.62% vs 25.00%, P < 0.05), and similar to group B (P > 0.05). CONCLUSION: Percutaneous catheter drainage for the treatment of SAP complicated by intra-abdominal fluid accumulation is most effective when performed within 2 d of onset.

2.
Nat Mater ; 22(4): 442-449, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35637339

ABSTRACT

Materials capable of sustaining high radiation doses at a high temperature are required for next-generation fission and future fusion energy. To date, however, even the most promising structural materials cannot withstand the demanded radiation environment due to irreversible radiation-driven microstructure degradation. Here we report a counterintuitive strategy to achieve exceptionally high radiation tolerance at high temperatures by enabling reversible local disordering-ordering transition of the introduced superlattice nanoprecipitates in metallic materials. As particularly demonstrated in martensitic steel containing a high density of B2-ordered superlattices, no void swelling was detected even after ultrahigh-dose radiation damage at 400-600 °C. The reordering process of the low-misfit superlattices in highly supersaturated matrices occurs through the short-range reshuffling of radiation-induced point defects and excess solutes right after rapid, ballistic disordering. This dynamic process stabilizes the microstructure, continuously promotes in situ defect recombination and efficiently prevents the capillary-driven long-range diffusion process. The strategy can be readily applied into other materials and pave the pathway for developing materials with high radiation tolerance.

3.
Comput Model Eng Sci ; 139(1): 361-382, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38566835

ABSTRACT

Aim: This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately. Methods: A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of the localization and classification tasks to help improve the model's generalization ability. Third, we introduce strategies for augmenting the data. Finally, we submit a novel deep learning model, ThyroidNet, to accurately detect thyroid nodules. Results: ThyroidNet was evaluated on private datasets and was comparable to other existing methods, including U-Net and TransUnet. Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules. It achieved improved accuracy of 3.9% and 1.5%, respectively. Conclusion: ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks. Future research directions include optimization of the model structure, expansion of the dataset size, reduction of computational complexity and memory requirements, and exploration of additional applications of ThyroidNet in medical image analysis.

4.
Heart Rhythm ; 19(12): 2095-2104, 2022 12.
Article in English | MEDLINE | ID: mdl-35948203

ABSTRACT

BACKGROUND: Strategies to improve various cardiovascular diseases by blocking cardiac sympathetic ganglion have been increasingly available currently. Botulinum toxin type A (BTA), a typical neurotoxin, has been shown to block neural transmission in a safe and long-lasting manner. OBJECTIVE: The aim of the present preclinical study was to assess the efficacy of BTA microinjection to alleviate cardiac remodeling after chronic myocardial infarction (MI) by blocking cardiac sympathetic ganglion in a canine model. METHODS: Beagles were randomly divided into a control group (saline microinjection with sham surgery), an MI group (saline microinjection with MI), and an MI + BTA group (BTA microinjection with MI). Ultrasound-guided percutaneous BTA or saline injection into the left stellate ganglion (LSG) was performed followed by MI induction via left anterior descending artery occlusion (LADO) or sham surgery. After 30 days, electrocardiography, Doppler echocardiography, LSG function, neural activity, and ventricular electrophysiological detection were performed in all experimental dogs. At the end, LSG and ventricular tissues were collected for further detection. RESULTS: BTA treatment significantly inhibited LSG function and neural activity and improved heart rate variability. Additionally, BTA application alleviated ventricular remodeling, ameliorated cardiac function, and prevented ventricular arrhythmias after 30-day chronic LADO-induced MI. CONCLUSION: Ultrasound-guided percutaneous microinjection of BTA can block cardiac sympathetic ganglion to improve cardiac remodeling in a large animal model of chronic LADO-induced MI. Ultrasound-guided BTA microinjection has potential for clinical application as a novel cardiac sympathetic ganglion blockade strategy for MI.


Subject(s)
Botulinum Toxins, Type A , Myocardial Infarction , Animals , Dogs , Botulinum Toxins, Type A/pharmacology , Ventricular Remodeling , Myocardial Infarction/drug therapy , Stellate Ganglion , Disease Models, Animal , Ultrasonography, Interventional
5.
Front Cardiovasc Med ; 9: 853583, 2022.
Article in English | MEDLINE | ID: mdl-35445093

ABSTRACT

Background: Patients with lower extremity arteriosclerosis obliterans (LEASO) are more likely to appear to be associated with adverse cardiovascular outcomes. Currently, few studies have reported the sex-specific characteristics and risk of major cardiovascular and cerebrovascular adverse events (MACCEs) in LEASO. Our study was conducted to determine the characteristics and contributions of LEASO to MACCEs in males and females. Methods: We conducted a single-center retrospective study of consecutively enrolled patients with first-diagnosed LEASO at Renmin Hospital of Wuhan University from November 2017 to November 2019. The ratio of patients between the LEASO and control groups was 1 to 1 and based on age, sex, comorbid diabetes mellitus and hypertension, current smoking and medications. The occurrence of MACCEs was used as the primary endpoint of this observational study. Results: A LEASO group (n = 430) and control group (n = 430) were enrolled in this study. A total of 183 patients experienced MACCEs during an average of 38.83 ± 14.28 months of follow-up. Multivariate Cox regression analysis indicated that LEASO was an independent predictor of the occurrence of MACCEs in all patients (HR: 2.448, 95% CI: 1.730-3.464, P < 0.001). Subgroup analysis by sex subgroup was conducted for sex, and LEASO was also an independent predictor of the occurrence of MACCEs in both male cases (HR: 2.919, 95% CI: 1.776-4.797, P < 0.001) and female cases (HR: 1.788, 95% CI: 1.110-2.880, P = 0.017). Moreover, Kaplan-Meier analysis indicated no significant difference in event-free survival between patients of different sexes with LEASO (χ2 = 0.742, P = 0.389). Conclusion: LEASO tended to a useful risk stratified indicator for MACCEs in both male and female patients in our study. Notably, attention should be given to patients with LEASO who should undergo comprehensive cardiovascular evaluation and intervention, even if there is a lack of traditional cardiovascular risk factors.

6.
Front Cardiovasc Med ; 9: 848499, 2022.
Article in English | MEDLINE | ID: mdl-35391835

ABSTRACT

Background: Both coronary physiology and deceleration capacity (DC) showed prognostic efficacy for patients with acute coronary syndrome (ACS). This retrospective cohort study was performed to evaluate the prognostic implication of DC combined with the relative increase and final coronary physiology as detected by quantitative flow ratio (QFR) for patients with non-ST-elevation ACS (NSTE-ACS) who underwent complete and successful percutaneous coronary intervention (PCI). Methods: Patients with NSTE-ACS who underwent PCI with pre- and post-procedural QFR in our department between January 2018 and November 2019 were included. The 24-hour deceleration capacity (DC 24h) was obtained via Holter monitoring. The incidence of major adverse cardiac and cerebrovascular events (MACCEs) during follow up was defined as the primary outcome. The optimal cutoffs of the relative increase, final QFR, and DC 24h for prediction of MACCEs were determined via receiver operating characteristic (ROC) analysis and the predictive efficacies were evaluated with multivariate Cox regression analysis. Results: Overall, 240 patients were included. During a mean follow up of 21.3 months, 31 patients had MACCEs. Results of multivariate Cox regression analyses showed that a higher post-PCI QFR [adjusted hazard ratio (HR): 0.318; 95% confidence interval (CI): 0.129-0.780], a higher relative QFR increase (HR: 0.161; 95% CI: 0.066-0.391], and a higher DC (HR: 0.306; 95% CI: 0.134-0.701) were all independent predictors of lower risk of MACCEs. Subsequently, incorporating low DC (≤2.42) into the risk predicting model with clinical variables, the predictive efficacies of low relative QRS increase (≤23%) and low post-PCI QFR (≤0.88) for MACCEs were both significantly improved. Conclusions: The DC combined with relative increase and final coronary physiology may improve the predictive efficacy of existing models based on clinical variables for MACCEs in NSTE-ACS patients who underwent complete and successful PCI.

7.
Front Cardiovasc Med ; 8: 718674, 2021.
Article in English | MEDLINE | ID: mdl-34631821

ABSTRACT

Objective: Butyrate, a short-chain fatty acid (SCFA) produced by the intestinal microbiota, plays a protective role in cardiovascular diseases (CVDs), but the mechanisms involved in this process remain unelucidated. We aimed to explore the effect of butyrate on myocardial ischemia/reperfusion (I/R) injury through the gut-brain neural circuit. Methods: Rats were randomly divided into four groups: sham group (sham), I/R group (I/R), I/R+ butyrate group (butyrate), and I/R+ butyrate+ vagotomy group (vagotomy). The rats were treated with sodium butyrate for 4 weeks, and the gut-brain neural circuit was investigated by subdiaphragmatic vagotomy. Results: Butyrate treatment significantly reduced the infarct size and decreased the expression of creatine kinase (CK), creatine kinase myocardial isoenzyme (CK-MB), and lactate dehydrogenase (LDH) compared with the values found for the I/R group. In addition, the I/R-induced increases in inflammation, oxidative stress, and apoptosis were attenuated by butyrate. However, the above-mentioned protective effects were diminished by subdiaphragmatic vagotomy. The RNA sequencing results also revealed that the butyrate-induced protective changes at the cardiac transcription level were reversed by vagotomy. An analysis of the heart rate variability (HRV) and the detection of norepinephrine (NE) showed that butyrate significantly inhibited the I/R-induced autonomic imbalance, but this inhibition was not observed in the vagotomy group. Butyrate treatment also suppressed the neural activity of the paraventricular nucleus (PVN) and superior cervical ganglion (SCG), and both of these effects were lost after vagotomy. Conclusions: Butyrate treatment significantly improves myocardial I/R injury via a gut-brain neural circuit, and this cardioprotective effect is likely mediated by suppression of the sympathetic nervous system.

8.
Front Cardiovasc Med ; 8: 714276, 2021.
Article in English | MEDLINE | ID: mdl-34660716

ABSTRACT

Background: The association between coronary physiology and immunoinflammation has not been investigated. We performed a retrospective study using quantitative flow ratio (QFR) to evaluate the interaction between immunoinflammatory biomarkers and coronary physiology. Methods: A total of 172 patients with CAD who underwent coronary arteriography (CAG) and QFR were continuously enrolled from May 2020 to February 2021. As a quantitative indicator of coronary physiology, QFR can reflect the functional severity of coronary artery stenosis. The target vessel measured by QFR was defined as that with the most severe lesions. Significant coronary anatomical stenosis was defined as 70% stenosis in the target vessel. Results: Compared with the QFR > 0.8 group, interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ were increased and CD3+ and CD4+ T lymphocyte counts were decreased in the QFR ≤ 0.8 group. In addition, patients with DS ≤ 70% had higher IL-6, IL-10, and TNF-α levels and decreased CD3+ and CD4+ T lymphocyte counts than those with DS > 70%. Logistic regression analysis indicated IL-6 to be an independent predictor of significant coronary functional and anatomic stenosis (odds ratio, 1.125; 95% CI, 1.059-1.196; P < 0.001). Receiver operating characteristic (ROC) analyses showed that IL-6 > 6.36 was predictive of QFR ≤ 0.8 of the target vessel. The combination of IL-6, IL-10 and CD4 improved the value for predicting QFR ≤ 0.8 of the target vessel (AUC, 0.737; 95% CI, 0.661-0.810). Conclusion: Among immunoinflammatory biomarkers, IL-6 was independently associated with a higher risk of QFR ≤ 0.8 of the target vessel. The combination of immunoinflammatory biomarkers was highly predictive of significant coronary functional and anatomic stenosis.

9.
Front Cardiovasc Med ; 8: 700943, 2021.
Article in English | MEDLINE | ID: mdl-34386531

ABSTRACT

Background: Heart rate variability (HRV) was proposed as a noninvasive biomarker to stratify the risk of cardiovascular disease. However, it remains to be determined if HRV can be used as a surrogate for coronary artery physiology as analyzed by quantitative flow ratio (QFR) in patients with new-onset unstable angina pectoris (UAP). Methods: A total of 129 consecutive patients with new-onset UAP who underwent 24-h long-range 12-channel electrocardiography from June 2020 to December 2020 were included in this study. HRV, coronary angiography, and QFR information was retrieved from patient medical records, the severity of coronary lesions was evaluated using the Gensini score (GS), and total atherosclerotic burden was assessed using the three-vessel contrast QFR (3V-cQFR) calculated as the sum of cQFR in three vessels. Results: Multivariate logistic analysis showed that low-frequency power (LF) and high-sensitivity C-reactive protein (hs-CRP) were directly correlated with functional ischemia of target vessel, which were inversely correlated with total atherosclerotic burden as assessed by 3V-cQFR. Moreover, incorporation of the increase in LF into the existing model that uses clinical risk factors, GS, and hs-CRP significantly increased the discriminatory ability for evaluating coronary artery physiology of target vessel. Conclusions: LF and hs-CRP are independently associated with functional ischemia in patients with new-onset UAP. The relative increase of LF and hs-CRP could add value to the use of classical cardiovascular risk factors to predict the functional severity of coronary artery stenosis. Our results suggest a potential association between the autonomic nervous system, inflammation, and coronary artery physiology.

10.
Materials (Basel) ; 12(16)2019 Aug 18.
Article in English | MEDLINE | ID: mdl-31426589

ABSTRACT

This paper provides a new method to compare and then reveal the vacancy sink efficiencies quantitively between different hetero-interfaces with a shared Cu layer in one sample, in contrast to previous studies, which have compared the vacancy sink efficiencies of interfaces in different samples. Cu-Nb-Cu-V nanoscale metallic multilayer composites (NMMCs) containing Cu/V and Cu/Nb interfaces periodically were prepared as research samples and bombarded with helium ions to create vacancies which were filled by helium bubbles. A special Cu layer shared by adjoining Cu/V and Cu/Nb interfaces exists, in which the implanted helium concentration reaches its maximum and remains nearly constant with a well-designed incident energy. The results show that bubble-denuded zones (BDZ) close to interfaces exist, and that the width of the BDZ close to the Cu/V interface is less than that of Cu/Nb interface. This result is explained by one-dimensional diffusion theory, and the ratio of vacancy sink efficiency between Cu/V and Cu/Nb interfaces is calculated. Conclusively, Cu/Nb interfaces are more efficient than Cu/V interfaces in eliminating vacancies induced by radiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...