Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
BMC Genom Data ; 25(1): 43, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710997

ABSTRACT

BACKGROUND: Cadmium (Cd) is extremely toxic and non-essential for plants. Different soybean varieties differ greatly in their Cd accumulation ability, but little is known about the underlying molecular mechanisms. RESULTS: Here, we performed transcriptomic analysis using Illumina pair-end sequencing on root tissues from two soybean varieties (su8, high-Cd-accumulating (HAS) and su7, low Cd-accumulating (LAS)) grown with 0 or 50 µM CdSO4. A total of 18.76 million clean reads from the soybean root samples were obtained after quality assessment and data filtering. After Cd treatment, 739 differentially expressed genes (DEGs; 265 up and 474 down) were found in HAS; however, only 259 DEGs (88 up and 171 down) were found in LAS, and 64 genes were same between the two varieties. Pathway enrichment analysis suggested that after cadmium treatment, the DEGs between LAS and HAS were mainly enriched in glutathione metabolism and plant-pathogen interaction pathways. KEGG analysis showed that phenylalanine metabolism responding to cadmium stress in LAS, while ABC transporters responding to cadmium stress in HAS. Besides we found more differential expressed heavy metal transporters such as ABC transporters and zinc transporters in HAS than LAS, and there were more transcription factors differently expressed in HAS than LAS after cadmium treatment in two soybean varieties, eg. bHLH transcription factor, WRKY transcription factor and ZIP transcription factor. CONCLUSIONS: Findings from this study will shed new insights on the underlying molecular mechanisms behind the Cd accumulation in soybean.


Subject(s)
Cadmium , Gene Expression Profiling , Gene Expression Regulation, Plant , Glycine max , Stress, Physiological , Glycine max/genetics , Glycine max/drug effects , Glycine max/metabolism , Cadmium/toxicity , Cadmium/metabolism , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics , Genotype , Transcriptome/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics
2.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473783

ABSTRACT

Soybean (Glycine max [L.] Merr.) is one of the primary sources of plant protein and oil for human foods, animal feed, and industrial processing. The seed number per pod generally varies from one to four and is an important component of seed number per unit area and seed yield. We used natural variation in 264 landraces and improved cultivars or lines to identify candidate genes involved in the regulation of seed number per pod in soybean. Genome-wide association tests revealed 65 loci that are associated with seed number per pod trait. Among them, 11 could be detected in multiple environments. Candidate genes were identified for seed number per pod phenotype from the most significantly associated loci, including a gene encoding protein argonaute 4, a gene encoding histone acetyltransferase of the MYST family 1, a gene encoding chromosome segregation protein SMC-1 and a gene encoding exocyst complex component EXO84A. In addition, plant hormones were found to be involved in ovule and seed development and the regulation of seed number per pod in soybean. This study facilitates the dissection of genetic networks underlying seed number per pod in soybean, which will be useful for the genetic improvement of seed yield in soybean.


Subject(s)
Genome-Wide Association Study , Glycine max , Humans , Chromosome Mapping , Quantitative Trait Loci , Linkage Disequilibrium , Seeds/genetics
3.
Front Plant Sci ; 15: 1352379, 2024.
Article in English | MEDLINE | ID: mdl-38425800

ABSTRACT

Soybean [Glycine max(L.)Merr.] is a leading oil-bearing crop and cultivated globally over a vast scale. The agricultural landscape in China faces a formidable challenge with drought significantly impacting soybean production. In this study, we treated a natural population of 264 Chinese soybean accessions using 15% PEG-6000 and used GR, GE, GI, RGR, RGE, RGI and ASFV as evaluation index. Using the ASFV, we screened 17 strong drought-tolerant soybean germplasm in the germination stage. Leveraging 2,597,425 high-density SNP markers, we conducted Genome-Wide Association Studies (GWAS) and identified 92 SNPs and 9 candidate genes significantly associated with drought tolerance. Furthermore, we developed two KASP markers for S14_5147797 and S18_53902767, which closely linked to drought tolerance. This research not only enriches the pool of soybean germplasm resources but also establishes a robust foundation for the molecular breeding of drought tolerance soybean varieties.

4.
Plant Cell ; 36(6): 2160-2175, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38412459

ABSTRACT

Synergistic optimization of key agronomic traits by traditional breeding has dramatically enhanced crop productivity in the past decades. However, the genetic basis underlying coordinated regulation of yield- and quality-related traits remains poorly understood. Here, we dissected the genetic architectures of seed weight and oil content by combining genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS) using 421 soybean (Glycine max) accessions. We identified 26 and 33 genetic loci significantly associated with seed weight and oil content by GWAS, respectively, and detected 5,276 expression quantitative trait loci (eQTLs) regulating expression of 3,347 genes based on population transcriptomes. Interestingly, a gene module (IC79), regulated by two eQTL hotspots, exhibited significant correlation with both seed weigh and oil content. Twenty-two candidate causal genes for seed traits were further prioritized by TWAS, including Regulator of Weight and Oil of Seed 1 (GmRWOS1), which encodes a sodium pump protein. GmRWOS1 was verified to pleiotropically regulate seed weight and oil content by gene knockout and overexpression. Notably, allelic variations of GmRWOS1 were strongly selected during domestication of soybean. This study uncovers the genetic basis and network underlying regulation of seed weight and oil content in soybean and provides a valuable resource for improving soybean yield and quality by molecular breeding.


Subject(s)
Genome-Wide Association Study , Glycine max , Quantitative Trait Loci , Seeds , Glycine max/genetics , Glycine max/metabolism , Glycine max/growth & development , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Quantitative Trait Loci/genetics , Gene Expression Regulation, Plant , Transcriptome/genetics , Plant Oils/metabolism , Soybean Oil/metabolism , Soybean Oil/genetics , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Multiomics
5.
Front Plant Sci ; 15: 1352465, 2024.
Article in English | MEDLINE | ID: mdl-38384759

ABSTRACT

Salt stress poses a significant challenge to crop productivity, and understanding the genetic basis of salt tolerance is paramount for breeding resilient soybean varieties. In this study, a soybean natural population was evaluated for salt tolerance during the germination stage, focusing on key germination traits, including germination rate (GR), germination energy (GE), and germination index (GI). It was seen that under salt stress, obvious inhibitions were found on these traits, with GR, GE, and GI diminishing by 32% to 54% when compared to normal conditions. These traits displayed a coefficient of variation (31.81% to 50.6%) and a substantial generalized heritability (63.87% to 86.48%). Through GWAS, a total of 1841 significant single-nucleotide polymorphisms (SNPs) were identified to be associated with these traits, distributed across chromosome 2, 5, 6, and 20. Leveraging these significant association loci, 12 candidate genes were identified to be associated with essential functions in coordinating cellular responses, regulating osmotic stress, mitigating oxidative stress, clearing reactive oxygen species (ROS), and facilitating heavy metal ion transport - all of which are pivotal for plant development and stress tolerance. To validate the candidate genes, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was conducted, revealing three highly expressed genes (Glyma.02G067700, Glyma.02G068900, and Glyma.02G070000) that play pivotal roles in plant growth, development, and osmoregulation. In addition, based on these SNPs related with salt tolerance, KASP (Kompetitive Allele-Specific PCR)markers were successfully designed to genotype soybean accessions. These findings provide insight into the genetic base of soybean salt tolerance and candidate genes for enhancing soybean breeding programs in this study.

6.
Biochem Biophys Res Commun ; 696: 149422, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38183795

ABSTRACT

Identification and functional analysis of key genes regulated by the circadian clock system will provide a comprehensive understanding of the underlying mechanisms through which circadian clock disruption impairs the health of living organisms. The initial phase involved bioinformatics analysis, drawing insights from three RNA-seq datasets (GSE184303, GSE114400, and GSE199061) derived from wild-type mouse liver tissues, which encompassed six distinct time points across a day. As expected, 536 overlapping genes exhibiting rhythmic expression patterns were identified. By intersecting these genes with differentially expressed genes (DEGs) originating from liver RNA-seq data at two representative time points (circadian time, CT: CT2 and CT14) in global Bmal1 knockout mice (Bmal1-/-), hepatocyte-specific Bmal1 knockout mice (L-Bmal1-/-), and their corresponding control groups, 80 genes potentially regulated by BMAL1 (referred to as BMAL1-regulated genes, BRGs) were identified. These genes were significantly enriched in glycolipid metabolism, immune response, and tumorigenesis pathways. Eight BRGs (Nr1d1, Cry1, Gys2, Homer2, Serpina6, Slc2a2, Nmrk1, and Upp2) were selected to validate their expression patterns in both control and L-Bmal1-/- mice livers over 24 h. Real-time quantitative polymerase chain reaction results demonstrated a comprehensive loss of rhythmic expression patterns in the eight selected BRGs in L-Bmal1-/- mice, in contrast to the discernible rhythmic patterns observed in the livers of control mice. Additionally, significant reductions in the expression levels of these selected BRGs, excluding Cry1, were also observed in L-Bmal1-/- mice livers. Chromatin immunoprecipitation (ChIP)-seq (GSE13505 and GSE39860) and JASPAR analyses validated the rhythmic binding of BMAL1 to the promoter and intron regions of these genes. Moreover, the progression of conditions, from basic steatosis to non-alcoholic fatty liver disease, and eventual malignancy, demonstrated a continuous gradual decline in Bmal1 transcripts in the human liver. Combining the aforementioned BRGs with DEGs derived from human liver cancer datasets identified Gys2 and Upp2 as potential node genes bridging the circadian clock system and hepatocellular carcinoma (HCC). In addition, CCK8 and wound healing assays demonstrated that the overexpression of human GYS2 and UPP2 proteins inhibited the proliferation and migration of HepG2 cells, accompanied by elevated expression of p53, a tumor suppressor protein. In summary, this study systematically identified rhythmic genes in the mouse liver, and a subset of circadian genes potentially regulated by BMAL1. Two circadian genes, Gys2 and Upp2, have been proposed and validated as potential candidates for advancing the prevention and treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Circadian Clocks , Liver Neoplasms , Animals , Humans , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Carcinoma, Hepatocellular/pathology , Circadian Clocks/genetics , Circadian Rhythm/genetics , CLOCK Proteins/genetics , Gene Expression Regulation , Homer Scaffolding Proteins/metabolism , Liver/metabolism , Liver Neoplasms/pathology , Mice, Knockout , Uridine Phosphorylase/metabolism , Glycogen Synthase/metabolism
7.
ACS Nano ; 18(6): 4822-4839, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38285698

ABSTRACT

Efficiently delivering exogenous materials into primary neurons and neural stem cells (NSCs) has long been a challenge in neurobiology. Existing methods have struggled with complex protocols, unreliable reproducibility, high immunogenicity, and cytotoxicity, causing a huge conundrum and hindering in-depth analyses. Here, we establish a cutting-edge method for transfecting primary neurons and NSCs, named teleofection, by a two-step process to enhance the formation of biocompatible calcium phosphate (CaP) nanoparticles. Teleofection enables both nucleic acid and protein transfection into primary neurons and NSCs, eliminating the need for specialized skills and equipment. It can easily fine-tune transfection efficiency by adjusting the incubation time and nanoparticle quantity, catering to various experimental requirements. Teleofection's versatility allows for the delivery of different cargos into the same cell culture, whether simultaneously or sequentially. This flexibility proves invaluable for long-term studies, enabling the monitoring of neural development and synapse plasticity. Moreover, teleofection ensures the consistent and robust expression of delivered genes, facilitating molecular and biochemical investigations. Teleofection represents a significant advancement in neurobiology, which has promise to transcend the limitations of current gene delivery methods. It offers a user-friendly, cost-effective, and reproducible approach for researchers, potentially revolutionizing our understanding of brain function and development.


Subject(s)
Nanoparticles , Neural Stem Cells , Nucleic Acids , Nucleic Acids/metabolism , Reproducibility of Results , Neural Stem Cells/metabolism , Nanoparticles/chemistry , Transfection , Calcium Phosphates/chemistry
8.
Hortic Res ; 11(1): uhad247, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38274647

ABSTRACT

Because its long, tender pods supply essential proteins, vitamins, and fibers to humans, yardlong bean (Vigna unguiculata ssp. sesquipedalis) is a commonly consumed vegetable, especially in Southeast Asia. To provide insights into the genetic bases of key agricultural traits in yardlong bean, we here created a high-density bin-map with 2084 bin markers using 514 227 SNPs from a recombinant-inbred line (RIL) population. Quantitative trait loci (QTL) mapping was carried out to identify loci associated with anthocyanin content (ANT), vitamin E content (VE), total soluble protein content (TSP), pod length (PL), hundred-seed weight (HSW), seed length and width (SL and SW, respectively), and seed coat color (SCC). In total, 20 related QTLs were isolated, explaining 7.58-56.03% of the phenotypic variation. Of these, five major QTLs (qANT5, qTSP11, qVE7, qPL3, and qSCC9) were detected in 2020, 2021, and the combined environment, explaining 11.96-56.03% of the phenotypic variation. VuANT1 was identified as a causal gene for the QTL qANT5, which regulated anthocyanin content; VuANT1 was highly expressed in immature purple pods but barely detectable in white pods. VuANT1 overexpression in tobacco leaves and yardlong bean hairy roots resulted in purple coloration as a result of anthocyanin accumulation. These findings suggested that VuANT1 was a key regulator of anthocyanin accumulation in yardlong bean. Our results lay a firm foundation for target agricultural trait improvement and clarification of the genetic mechanisms underlying agricultural traits in yardlong bean.

9.
Antioxidants (Basel) ; 12(12)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38136242

ABSTRACT

After parturition, bovine endometrial epithelial cells (BEECs) undergo serious inflammation and imbalance between oxidation and antioxidation, which is widely acknowledged as a primary contributor to the development of endometritis in dairy cows. Nevertheless, the mechanism of oxidative stress-mediated inflammation and damage in bovine endometrial epithelial cells remains inadequately defined, particularly the molecular pathways associated with mitochondria-dependent apoptosis. Hence, the present study was designed to explore the mechanism responsible for mitochondrial dysfunction-induced BEEC damage. In vivo, the expressions of proapoptotic protein caspase 3 and cytochrome C were increased significantly in dairy uteri with endometritis. Similarly, the levels of proapoptotic protein caspase 3, BAX, and cytochrome C were markedly increased in H2O2-treated BEECs. Our findings revealed pronounced BEEC damage in dairy cows with endometritis, accompanied by heightened expression of cyto-C and caspase-3 both in vivo and in vitro. The reduction in apoptosis-related protein of BEECs due to oxidant injury was notably mitigated following N-acetyl-L-cysteine (NAC) treatment. Furthermore, mitochondrial vacuolation was significantly alleviated, and mitochondrial membrane potential returned to normal levels after the removal of ROS. Excessive ROS may be the main cause of mitochondrial dysfunction. Mitochondrial permeability transition pore (mPTP) blockade by cyclophilin D (CypD) knockdown with CSA significantly blocked the flow of cytochrome C (cyto-C) and Ca2+ to the cytoplasm from the mitochondria. Our results indicate that elevated ROS and persistent opening of the mPTP are the main causes of oxidative damage in BEECs. Collectively our results reveal a new mechanism involving ROS-mPTP signaling in oxidative damage to BEECs, which may be a potential avenue for the clinical treatment of bovine endometritis.

10.
Adv Protein Chem Struct Biol ; 137: 83-133, 2023.
Article in English | MEDLINE | ID: mdl-37709382

ABSTRACT

The mammalian circadian clock is an endogenously regulated oscillator that is synchronized with solar time and cycle within a 24-h period. The circadian clock exists not only in the suprachiasmatic nucleus (SCN) of the hypothalamus, a central pacemaker of the circadian clock system, but also in numerous peripheral tissues known as peripheral circadian oscillators. The SCN and peripheral circadian oscillators mutually orchestrate the diurnal rhythms of various physiological and behavioral processes in a hierarchical manner. In the past two decades, peripheral circadian oscillators have been identified and their function has been determined in the mammalian reproductive system and its related endocrine glands, including the hypothalamus, pituitary gland, ovaries, testes, uterus, mammary glands, and prostate gland. Increasing evidence indicates that both the SCN and peripheral circadian oscillators play discrete roles in coordinating reproductive processes and optimizing fertility in mammals. The present study reviews recent evidence on circadian clock regulation of reproductive function in the hypothalamic-pituitary-gonadal axis and reproductive system. Additionally, we elucidate the effects of chronodisruption (as a result of, for example, shift work, jet lag, disrupted eating patterns, and sleep disorders) on mammalian reproductive performance from multiple aspects. Finally, we propose potential behavioral changes or pharmaceutical strategies for the prevention and treatment of reproductive disorders from the perspective of chronomedicine. Conclusively, this review will outline recent evidence on circadian clock regulation of reproduction, providing novel perspectives on the role of the circadian clock in maintaining normal reproductive functions and in diseases that negatively affect fertility.


Subject(s)
Circadian Clocks , Animals , Male , Female , Reproduction , Hypothalamic-Pituitary-Gonadal Axis , Mammals
11.
Biol Reprod ; 109(5): 720-735, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37552055

ABSTRACT

Trophoblast plays a crucial role in gestation maintenance and embryo implantation, partly due to the synthesis of progesterone. It has been demonstrated that hypoxia regulates invasion, proliferation, and differentiation of trophoblast cells. Additionally, human trophoblasts display rhythmic expression of circadian clock genes. However, it remains unclear if the circadian clock system is present in goat trophoblast cells (GTCs), and its involvement in hypoxia regulation of steroid hormone synthesis remains elusive. In this study, immunofluorescence staining revealed that both BMAL1 and NR1D1 (two circadian clock components) were highly expressed in GTCs. Quantitative real-time PCR analysis showed that several circadian clock genes were rhythmically expressed in forskolin-synchronized GTCs. To mimic hypoxia, GTCs were treated with hypoxia-inducing reagents (CoCl2 or DMOG). Quantitative real-time PCR results demonstrated that hypoxia perturbed the mRNA expression of circadian clock genes and StAR. Notably, the increased expression of NR1D1 and the reduction of StAR expression in hypoxic GTCs were also detected by western blotting. In addition, progesterone secretion exhibited a notable decline in hypoxic GTCs. SR9009, an NR1D1 agonist, significantly decreased StAR expression at both the mRNA and protein levels and markedly inhibited progesterone secretion in GTCs. Moreover, SR8278, an NR1D1 antagonist, partially reversed the inhibitory effect of CoCl2 on mRNA and protein expression levels of StAR and progesterone synthesis in GTCs. Our results demonstrate that hypoxia reduces StAR expression via the activation of NR1D1 signaling in GTCs, thus inhibiting progesterone synthesis. These findings provide new insights into the NR1D1 regulation of progesterone synthesis in GTCs under hypoxic conditions.


Subject(s)
Progesterone , Trophoblasts , Animals , Humans , Trophoblasts/metabolism , Goats/genetics , Hypoxia , RNA, Messenger , Cobalt , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
12.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445922

ABSTRACT

Brucella suis, the causative agent of brucellosis, poses a significant public health and animal husbandry threat. However, the role of the alanine racemase (alr) gene, which encodes alanine racemase in Brucella, remains unclear. Here, we analyzed an alr deletion mutant and a complemented strain of Brucella suis S2. The knockout strain displayed an unaltered, smooth phenotype in acriflavine agglutination tests but lacked the core polysaccharide portion of lipopolysaccharide (LPS). Genes involved in the LPS synthesis were significantly upregulated in the deletion mutant. The alr deletion strain exhibited reduced intracellular viability in the macrophages, increased macrophage-mediated killing, and upregulation of the apoptosis markers. Bcl2, an anti-apoptotic protein, was downregulated, while the pro-apoptotic proteins, Bax, Caspase-9, and Caspase-3, were upregulated in the macrophages infected with the deletion strain. The infected macrophages showed increased mitochondrial membrane permeability, Cytochrome C release, and reactive oxygen species, activating the mitochondrial apoptosis pathway. These findings revealed that alanine racemase was dispensable in B. suis S2 but influenced the strain's rough features and triggered the mitochondrial apoptosis pathway during macrophage invasion. The deletion of the alr gene reduced the intracellular survival and virulence. This study enhances our understanding of the molecular mechanism underlying Brucella's survival and virulence and, specifically, how alr gene affects host immune evasion by regulating bacterial LPS biosynthesis.


Subject(s)
Alanine Racemase , Brucella suis , Brucellosis , Animals , Brucella suis/genetics , Lipopolysaccharides , Virulence/genetics , Brucellosis/microbiology
13.
Int J Mol Sci ; 24(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446399

ABSTRACT

Endometritis in high-yield dairy cows adversely affects lactation length, milk quality, and the economics of dairy products. Endoplasmic reticulum stress (ERS) in bovine endometrial epithelial cells (BEECs) occurs as a consequence of diverse post-natal stressors, and plays a key role in a variety of inflammatory diseases. Nuclear-factor-erythroid-2-related factor 2 (Nrf2) is an important protective regulatory factor in numerous inflammatory responses. However, the mechanism by which Nrf2 modulates inflammation by participating in ERS remains unclear. The objective of the present study was to explore the role of Nrf2 in lipopolysaccharide (LPS)-induced injury to BEECs and to decipher the underlying molecular mechanisms of this injury. The expression of Nrf2- and ERS-related genes increased significantly in bovine uteri with endometritis. Isolated BEECs were treated with LPS to stimulate the inflammatory response. The expression of Nrf2 was significantly higher in cells exposed to LPS, which also induced ERS in BEECs. Activation of Nrf2 led to enhanced expression of the genes for the inflammation markers TNF-α, p65, IL-6, and IL-8 in BEECs. Moreover, stimulation of Nrf2 was accompanied by activation of ERS. In contrast, Nrf2 knockdown reduced the expression of TNF-α, p65, IL-6, and IL-8. Additionally, Nrf2 knockdown decreased expression of ERS-related genes for the GRP78, PERK, eIF2α, ATF4, and CHOP proteins. Collectively, our findings demonstrate that Nrf2 and ERS are activated during inflammation in BEECs. Furthermore, Nrf2 promotes the inflammatory response by activating the PERK pathway in ERS and inducing apoptosis in BEECs.


Subject(s)
Endometritis , Humans , Female , Cattle , Animals , Endometritis/chemically induced , Endometritis/metabolism , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Interleukin-6/metabolism , Interleukin-8/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Epithelial Cells/metabolism , Endoplasmic Reticulum Stress
14.
Theriogenology ; 210: 119-132, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37494784

ABSTRACT

After delivery, bacterial contamination and uterine tissue degeneration in animals can lead to the development of uterine diseases, such as endometritis, accompanied by endoplasmic reticulum stress (ERS). Increasing evidence suggests that spliced X-box binding protein 1 (XBP1s), a critical component of ERS, is involved in several pathological processes in various organisms. However, the specific molecular mechanisms by which XBP1s mediates the inflammatory response in goat endometrial epithelial cells (gEECs) remain largely unknown. In the present study, XBP1s protein was induced into the nucleus in the lipopolysaccharide (LPS, 5 µg/mL)-induced inflammatory response of gEECs. Lipopolysaccharide-induced expression and nucleation of XBP1s were reduced by the inhibition of Toll-like receptor 4 (TLR4) using TAK-242 (1 µM; a TLR4 inhibitor). Expression and nucleation of XBP1s were similarly reduced when the activity of inositol-requiring enzyme 1α (IRE1α) was inhibited using 4µ8C (10 µM; an IRE1α inhibitor). In addition, inhibition of IRE1a increased IL-1ß, TNF-α, and IL-8 levels and secretion of IL-6 induced by LPS. Notably, phosphorylation of nuclear factor kappa-B (NF-κB) P65 protein and expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) were similarly increased. Furthermore, knockdown of XBP1s in gEECs consistently promoted NF-κB P65 protein phosphorylation, NLRP3 protein expression, and inflammatory cytokine secretion. In summary, the current results suggest that in the LPS-induced inflammatory response in gEECs, LPS generates intracellular signaling cascades in gEECs via TLR4, which may promote XBP1s protein expression and nucleation by activating IRE1a. However, downregulation of XBP1s expression exacerbates inflammation by promoting activation of the NF-κB and NLRP3 inflammatory vesicle pathways. These results will potentially contribute to the treatment and prevention of endometritis in ruminants.


Subject(s)
Endometritis , Goat Diseases , Female , Animals , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/pharmacology , Endoribonucleases/genetics , Endoribonucleases/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Down-Regulation , Endometritis/genetics , Endometritis/veterinary , Goats/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/veterinary , Epithelial Cells/metabolism
15.
Int J Mol Sci ; 24(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37373165

ABSTRACT

The inflammatory system activated by uterine infection is associated with decreased fertility. Diseases can be detected in advance by identifying biomarkers of several uterine diseases. Escherichia coli is one of the most frequent bacteria that is involved in pathogenic processes in dairy goats. The purpose of this study was to investigate the effect of endotoxin on protein expression in goat endometrial epithelial cells. In this study, the LC-MS/MS approach was employed to investigate the proteome profile of goat endometrial epithelial cells. A total of 1180 proteins were identified in the goat Endometrial Epithelial Cells and LPS-treated goat Endometrial Epithelial Cell groups, of which, 313 differentially expressed proteins were accurately screened. The proteomic results were independently verified by WB, TEM and IF techniques, and the same conclusion was obtained. To conclude, this model is suitable for the further study of infertility caused by endometrial damage caused by endotoxin. These findings may provide useful information for the prevention and treatment of endometritis.


Subject(s)
Endometritis , Endometrium , Goats , Proteins , Proteomics , Proteomics/methods , Endometritis/diagnosis , Liquid Chromatography-Mass Spectrometry , Female , Animals , Biomarkers/analysis , Endometrium/chemistry , Epithelial Cells/chemistry , Proteins/analysis , Cells, Cultured
16.
Theriogenology ; 207: 31-48, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37257220

ABSTRACT

Endometritis is a common disease in the reproductive system, which is the infection and inflammation of the endometrium. In severe cases, it can affect the myometrium and adversely affect the subsequent fertility of dairy cows. We used a mass spectrometry-based technique to compare proteomics of uterine lavage fluid between healthy cows and cows with cytological endometritis classified according to 100-day postpartum pregnancy results and diagnosis result. The uterine lavage fluid of dairy cows collected at 15 and 30 days after delivery was analyzed. 15 days postpartum, we identified a total of 1129 proteins in the control and cytological endometritis (CEM) groups. Among them, 160 proteins were accurately screened out. 30 days postpartum, we identified a total of 846 proteins in the control and cytological endometritis (CEM) groups. Among them, 186 proteins were accurately cytological endometritis (CEM). Endometritis is a costly reproductive disease in lactating cows, which needs to be diagnosed in time. Using proteomics method based on gel mass spectrometry, we compared the proteome of uterine lavage fluid of dairy cows with and without cytological endometritis to characterize the changes of proteomic characteristics associated with postpartum uterine disease. To provide reference for clinical application and basic research.


Subject(s)
Cattle Diseases , Endometritis , Puerperal Disorders , Pregnancy , Female , Cattle , Animals , Endometritis/veterinary , Lactation , Therapeutic Irrigation/veterinary , Proteomics , Uterus/metabolism , Postpartum Period , Puerperal Disorders/veterinary , Cattle Diseases/metabolism
17.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835532

ABSTRACT

MSX1 is an important member of the muscle segment homeobox gene (Msh) family and acts as a transcription factor to regulate tissue plasticity, yet its role in goat endometrium remodeling remains elusive. In this study, an immunohistochemical analysis showed that MSX1 was mainly expressed in the luminal and glandular epithelium of goat uterus, and the MSX1 expression was upregulated in pregnancy at days 15 and 18 compared with pregnancy at day 5. In order to explore its function, goat endometrial epithelial cells (gEECs) were treated with 17 ß-estrogen (E2), progesterone (P4), and/or interferon-tau (IFNτ), which were used to mimic the physiological environment of early pregnancy. The results showed that MSX1 was significantly upregulated with E2- and P4-alone treatment, or their combined treatment, and IFNτ further enhanced its expression. The spheroid attachment and PGE2/PGF2α ratio were downregulated by the suppression of MSX1. The combination of E2, P4, and IFNτ treatment induced the plasma membrane transformation (PMT) of gEECs, which mainly showed the upregulation of N-cadherin (CDH2) and concomitant downregulation of the polarity-related genes (ZO-1, α-PKC, Par3, Lgl2, and SCRIB). The knockdown of MSX1 partly hindered the PMT induced by E2, P4, and IFNτ treatment, while the upregulation of CDH2 and the downregulation of the partly polarity-related genes were significantly enhanced when MSX1 was overexpressed. Moreover, MSX1 regulated the CDH2 expression by activating the endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR) pathway. Collectively, these results suggest that MSX1 was involved in the PMT of the gEECs through the ER stress-mediated UPR pathway, which affects endometrial adhesion and secretion function.


Subject(s)
Endometrium , Goats , Pregnancy , Female , Animals , Goats/metabolism , Endometrium/metabolism , Progesterone/metabolism , Cell Membrane , Epithelial Cells/metabolism , Epithelium
18.
Cell Signal ; 101: 110502, 2023 01.
Article in English | MEDLINE | ID: mdl-36280090

ABSTRACT

The circadian clock and autophagy are essential biological mechanisms involved in regulating many physiological processes. Accumulating evidence has revealed that autophagic activity is regulated by the circadian clock system. However, whether autophagy regulates the circadian clock system remains unclear. In this study, rapamycin and AICAR, two classical activators of autophagy, were used to create autophagy activation models in BMAL1-dLuc U2OS cell line. The results showed that the mRNA expression of MAP1LC3B and ATG5 were significantly upregulated after autophagy activation, whereas the mRNA expression of circadian clock genes (BMAL1, PER2, REV-ERBα, and DBP) were significantly decreased. Consistent with these data, the relative ratio of LC3-II/LC3-I and the protein level of ATG5 were increased after rapamycin or AICAR treatment. In contrast, BMAL1 and REV-ERBα levels were decreased. Notably, the mRNA expression of circadian clock genes (BMAL1, PER2, REV-ERBα, and DBP) and autophagy-related genes (MAP1LC3B and ATG5) showed rhythmic expression patterns in both untreated and rapamycin/AICAR-treated U2OS cells. Moreover, the autophagy inhibitor 3-methyladenine partially reversed the inhibitory effects of autophagy on circadian clock genes expression and BMAL1-Luc oscillations. Another critical finding was that ATG5 knockout alleviates the inhibitory effect of rapamycin-mediated autophagy activation on the circadian clock oscillators in U2OS cells. Collectively, our data indicate that autophagy activation attenuates the circadian clock oscillators in U2OS cells via the ATG5 pathway.


Subject(s)
Circadian Clocks , Circadian Clocks/genetics , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Circadian Rhythm/physiology , RNA, Messenger/metabolism , Autophagy , Sirolimus/pharmacology
19.
Front Plant Sci ; 13: 1045953, 2022.
Article in English | MEDLINE | ID: mdl-36531396

ABSTRACT

Soybean [Glycine max (L.) Merr.] is an excellent source of protein. Understanding the genetic basis of protein content (PC) will accelerate breeding efforts to increase soybean quality. In the present study, a genome-wide association study (GWAS) was applied to detect quantitative trait loci (QTL) for PC in soybean using 264 re-sequenced soybean accessions and a high-quality single nucleotide polymorphism (SNP) map. Eleven QTL were identified as associated with PC. The QTL qPC-14 was detected by GWAS in both environments and was shown to have undergone strong selection during soybean improvement. Fifteen candidate genes were identified in qPC-14, and three candidate genes showed differential expression between a high-PC and a low-PC variety during the seed development stage. The QTL identified here will be of significant use in molecular breeding efforts, and the candidate genes will play essential roles in exploring the mechanisms of protein biosynthesis.

20.
Entropy (Basel) ; 24(12)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36554200

ABSTRACT

The decision-maker obtains the pairwise comparisons matrix by comparing two entities. In the process of comparing the two entities, the relationship between the two entities and other entities is not considered. In this way, the judgment may be illogical. This paper mainly studies the satisfactory consistency of the interval number pairwise comparisons matrix based on cyclic matrix. Firstly, the illogical judgment entity in the process of the decision-maker's judgment is expressed by the cyclic matrix. There are three entities and four entities to form the cyclic matrix. The relationship and various forms of the cyclic cycle formed by the four entities and the three entities are discussed; then, the satisfactory consistency of the interval number pairwise comparisons matrix is determined by judging whether there is a cyclic matrix in the submatrix of the interval number pairwise comparisons matrix. Finally, two examples are given to verify the rationality and effectiveness of the method.

SELECTION OF CITATIONS
SEARCH DETAIL
...