Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 6: 29896, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27435916

ABSTRACT

The transcription factor NF-κB is central to numerous physiologic processes including bone development, and its activation is controlled by IKKγ (also called NEMO), the regulatory subunit of IKK complex. NEMO is X-linked, and mutations in this gene result in Incontinentia Pigmenti in human hemizygous females. In mice, global deficiency causes embryonic lethality. In addition, certain point mutations in the NEMO (IKBKG) human gene manifest skeletal defects implicating NEMO in the regulation of bone homeostasis. To specifically investigate such role, we conditionally deleted Nemo from osteoclast and myeloid progenitors. Morphometric, histologic, and molecular analyses demonstrate that myeloid NEMO deletion causes osteopetrosis in mice. Mechanistically, NEMO deficiency hampered activation of IKK complex in osteoclast precursors, causing arrest of osteoclastogenesis and apoptosis. Interestingly, inhibiting apoptosis by genetic ablation of TNFr1 significantly increased cell survival, but failed to rescue osteoclastogenesis or reverse osteopetrosis. Based on this observation, we analyzed the expression of different regulators of osteoclastogenesis and discovered that NEMO deletion leads to increased RBPJ expression, resulting in a decrease of Blimp1 expression. Consequently, expression of IRF8 and Bcl6 which are targets of Blimp1 and potent osteoclastogenic transcriptional repressors, is increased. Thus, NEMO governs survival and osteoclast differentiation programs through serial regulation of multiple transcription factors.


Subject(s)
Bone Development/genetics , Intracellular Signaling Peptides and Proteins/genetics , Osteopetrosis/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Animals , Cell Differentiation/genetics , Gene Expression Regulation, Developmental , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Mice , Myeloid Cells/metabolism , Myeloid Cells/pathology , NF-kappa B/genetics , Osteoclasts/metabolism , Osteoclasts/pathology , Osteopetrosis/physiopathology , Point Mutation , Positive Regulatory Domain I-Binding Factor 1/genetics , Signal Transduction/genetics , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...