Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766204

ABSTRACT

Experience replay is a powerful mechanism to learn efficiently from limited experience. Despite several decades of compelling experimental results, the factors that determine which experiences are selected for replay remain unclear. A particular challenge for current theories is that on tasks that feature unbalanced experience, rats paradoxically replay the less-experienced trajectory. To understand why, we simulated a feedforward neural network with two regimes: rich learning (structured representations tailored to task demands) and lazy learning (unstructured, task-agnostic representations). Rich, but not lazy, representations degraded following unbalanced experience, an effect that could be reversed with paradoxical replay. To test if this computational principle can account for the experimental data, we examined the relationship between paradoxical replay and learned task representations in the rat hippocampus. Strikingly, we found a strong association between the richness of learned task representations and the paradoxicality of replay. Taken together, these results suggest that paradoxical replay specifically serves to protect rich representations from the destructive effects of unbalanced experience, and more generally demonstrate a novel interaction between the nature of task representations and the function of replay in artificial and biological systems.

2.
bioRxiv ; 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-36993254

ABSTRACT

Memories are encoded in neural ensembles during learning and stabilized by post-learning reactivation. Integrating recent experiences into existing memories ensures that memories contain the most recently available information, but how the brain accomplishes this critical process remains unknown. Here we show that in mice, a strong aversive experience drives the offline ensemble reactivation of not only the recent aversive memory but also a neutral memory formed two days prior, linking the fear from the recent aversive memory to the previous neutral memory. We find that fear specifically links retrospectively, but not prospectively, to neutral memories across days. Consistent with prior studies, we find reactivation of the recent aversive memory ensemble during the offline period following learning. However, a strong aversive experience also increases co-reactivation of the aversive and neutral memory ensembles during the offline period. Finally, the expression of fear in the neutral context is associated with reactivation of the shared ensemble between the aversive and neutral memories. Taken together, these results demonstrate that strong aversive experience can drive retrospective memory-linking through the offline co-reactivation of recent memory ensembles with memory ensembles formed days prior, providing a neural mechanism by which memories can be integrated across days.

3.
Curr Biol ; 31(19): 4293-4304.e5, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34428470

ABSTRACT

The rodent hippocampus constructs statistically independent representations across environments ("global remapping") and assigns individual neuron firing fields to locations within an environment in an apparently random fashion, processes thought to contribute to the role of the hippocampus in episodic memory. This random mapping implies that it should be challenging to predict hippocampal encoding of a given experience in one subject based on the encoding of that same experience in another subject. Contrary to this prediction, we find that by constructing a common representational space across rats in which neural activity is aligned using geometric operations (rotation, reflection, and translation; "hyperalignment"), we can predict data of "right" trials (R) on a T-maze in a target rat based on (1) the "left" trials (L) of the target rat and (2) the relationship between L and R trials from a different source rat. These cross-subject predictions relied on ensemble activity patterns, including both firing rate and field location, and outperformed a number of control mappings, such as those based on permuted data that broke the relationship between L and R activity for individual neurons and those based solely on within-subject prediction. This work constitutes proof of principle for successful cross-subject prediction of ensemble activity patterns in the hippocampus and provides new insights in understanding how different experiences are structured, enabling further work identifying what aspects of experience encoding are shared versus unique to an individual.


Subject(s)
Memory, Episodic , Rodentia , Animals , Hippocampus/physiology , Neurons/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...