Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Chin Med ; 52(1): 217-230, 2024.
Article in English | MEDLINE | ID: mdl-38291582

ABSTRACT

Cancer has evolved into a substantial public health concern as the second-leading cause of mortality globally. Radiotherapy and chemotherapy have been the two most widely used cancer therapies in recent years; however, both have drawbacks. Therefore, the focus has shifted to the creation of herbal medicines, the extraction of active ingredients, replacement therapy, and the adverse effects of these medications. Ginsenoside Rh2, which is extracted from ginseng, has been identified in many cancer cells. The immune system of the body is strengthened by ginsenoside Rh2, which can also cause the proliferation, death, and differentiation of tumor cells through various pathways. For instance, it inhibits the expression of the NF-[Formula: see text]B signaling pathway and induces cell apoptosis, affects the expression levels of mitochondrial apoptosis proteins Bcl-2 and Bax, and cooperates with the PD-1 blockade to reactivate T cells to promote an antitumor immune response. Furthermore, ginsenosides Rh2 has the effect of reversing the toxic effect of chemotherapy drugs on normal cells, reducing myocardial damage, and relieving bone marrow function suppression. For clinical applications, it is mainly used as an adjuvant drug for preoperative neoadjuvant chemotherapy, postoperative adjuvant chemotherapy, and rescue treatment of advanced cancer. This paper summarizes the pharmacological action and mechanism of ginsenosides Rh2 in all kinds of cancer and looks forward to its future development and application.


Subject(s)
Ginsenosides , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Apoptosis , Apoptosis Regulatory Proteins , Signal Transduction
2.
J Ethnopharmacol ; 307: 116243, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36791927

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Yishen Tongluo formula (YSTLF) is formulated based on traditional Chinese medicine theory for the treatment of Diabetic kidney disease (DKD) and has been shown to be effective in improving the symptoms of DKD according to the clinical observation. AIM OF THE STUDY: To explore the effect of YSTLF on DKD and figure out whether its effects were due to the regulation Sirt6/TGF-ß1/Smad2/3 pathway and promoting degradation of TGF-ß1. MATERIALS AND METHODS: The extract of YSTLF at 1, 2.5 and 5 g/kg was orally administered to C57BLKS/J (db/db) mice for 8 weeks and db/db mice were given valsartan as a positive control. The littermate db/m and db/db mice were given vehicle as the control and model group, respectively. Blood urea nitrogen and serum creatinine were detected and the urinary albumin excretion, urea albumin creatinine ratio was calculated. The histopathological change of renal tissues in each group was determined. Simultaneously, the levels of fibrosis-related proteins and messenger RNA (mRNA) in kidney and high glucose (HG)-induced SV40-MES-13 cells were detected. The roles of YSTLF in regulating of Sirt6/TGF-ß1/Smad2/3 signaling pathway were investigated in HG-stimulated SV40-MES-13 cells and validated in db/db mice. Furthermore, the effect of YSTLF on TGF-ß1 degradation was investigated in HG-stimulated SV40-MES-13 cells. RESULTS: YSTLF significantly improved the renal function in DKD mice. YSTLF dose-dependently attenuated pathological changes and suppressed the expression of type I collagen, alpha smooth muscle actin, type IV collagen, and fibronectin in vitro and in vivo, resulting in ameliorating of renal fibrosis. YSTLF positively regulated Sirt6 expression, while inhibited the activating of TGF-ß1/Smad2/3 signaling pathway. TGF-ß1 was steady expressed in HG-stimulated SV40-MES-13 cells, whereas was continuously degraded under YSTLF treatment. CONCLUSIONS: YSTLF significantly ameliorates renal damages and fibrosis may via regulating Sirt6/TGF-ß1/Smad2/3 signaling pathway as well as promoting the degradation of TGF-ß1.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Sirtuins , Mice , Animals , Diabetic Nephropathies/drug therapy , Transforming Growth Factor beta1/metabolism , Kidney , Fibrosis , Diabetes Mellitus/metabolism , Sirtuins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...