Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2402932, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864561

ABSTRACT

Singlet-to-triplet intersystem crossing (ISC) in organic molecules is intimately connected with their geometries: by modifying the molecular shape, symmetry selection rules pertaining to spin-orbit coupling can be partially relieved, leading to extra matrix elements for increased ISC. As an analog to this molecular design concept, the study finds that the lattice symmetry of supramolecular polymers also defines their triplet formation efficiencies. A supramolecular polymer self-assembled from weakly interacting molecules is considered. Its 2D oblique unit cell effectively renders it as a coplanar array of 1D molecular columns weakly bound to each other. Using momentum-resolved photoluminescence imaging in combination with Monte Carlo simulations, the study found that photogenerated charge carriers in the supramolecular polymer predominantly recombine as spin-uncorrelated carrier pairs through inter-column charge transfer states. This lattice-defined recombination pathway leads to a substantial triplet formation efficiency (≈60%) in the supramolecular polymer. These findings suggest that lattice symmetry of micro-/macroscopic structures relying on intermolecular interactions can be strategized for controlled triplet formation.

2.
Nat Commun ; 14(1): 2193, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069140

ABSTRACT

Two-dimensional (2D) materials have attracted attention for quantum information science due to their ability to host single-photon emitters (SPEs). Although the properties of atomically thin materials are highly sensitive to surface modification, chemical functionalization remains unexplored in the design and control of 2D material SPEs. Here, we report a chemomechanical approach to modify SPEs in monolayer WSe2 through the synergistic combination of localized mechanical strain and noncovalent surface functionalization with aryl diazonium chemistry. Following the deposition of an aryl oligomer adlayer, the spectrally complex defect-related emission of strained monolayer WSe2 is simplified into spectrally isolated SPEs with high single-photon purity. Density functional theory calculations reveal energetic alignment between WSe2 defect states and adsorbed aryl oligomer energy levels, thus providing insight into the observed chemomechanically modified quantum emission. By revealing conditions under which chemical functionalization tunes SPEs, this work broadens the parameter space for controlling quantum emission in 2D materials.

3.
Nat Commun ; 14(1): 848, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36792597

ABSTRACT

Electron spins in solid-state systems offer the promise of spin-based information processing devices. Single-walled carbon nanotubes (SWCNTs), an all-carbon one-dimensional material whose spin-free environment and weak spin-orbit coupling promise long spin coherence times, offer a diverse degree of freedom for extended range of functionality not available to bulk systems. A key requirement limiting spin qubit implementation in SWCNTs is disciplined confinement of isolated spins. Here, we report the creation of highly confined electron spins in SWCNTs via a bottom-up approach. The record long coherence time of 8.2 µs and spin-lattice relaxation time of 13 ms of these electronic spin qubits allow demonstration of quantum control operation manifested as Rabi oscillation. Investigation of the decoherence mechanism reveals an intrinsic coherence time of tens of milliseconds. These findings evident that combining molecular approaches with inorganic crystalline systems provides a powerful route for reproducible and scalable quantum materials suitable for qubit applications.

4.
J Phys Condens Matter ; 35(12)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36689777

ABSTRACT

The presence of in-plane chiral effects, hence spin-orbit coupling, is evident in the changes in the photocurrent produced in a TiS3(001) field-effect phototransistor with left versus right circularly polarized light. The direction of the photocurrent is protected by the presence of strong spin-orbit coupling and the anisotropy of the band structure as indicated in NanoARPES measurements. Dark electronic transport measurements indicate that TiS3is n-type and has an electron mobility in the range of 1-6 cm2V-1s-1.I-Vmeasurements under laser illumination indicate the photocurrent exhibits a bias directionality dependence, reminiscent of bipolar spin diode behavior. Because the TiS3contains no heavy elements, the presence of spin-orbit coupling must be attributed to the observed loss of inversion symmetry at the TiS3(001) surface.

5.
ACS Nano ; 16(12): 21240-21247, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36516862

ABSTRACT

The understanding and controlled creation of atomic defects in semiconductor transition metal dichalcogenides (TMDs) are highly relevant to their applications in high-performance quantum optics and nanoelectronic devices. Here, we demonstrate a versatile approach in generating single-photon emitters in MoS2 monolayers using widely attainable UV light. We discover that only defects engendered by UV photons in vacuum exhibit single-photon-emitter characteristics, whereas those created in air lack quantum emission attributes. In combination with theoretical calculations, we assign the defects generated in vacuum to unpassivated sulfur vacancies, whose highly localized midgap states give rise to single-photon emission. In contrast, UV irradiation of the MoS2 monolayers in air results in oxygen-passivated sulfur vacancies, whose optical properties are likely governed by their pristine band-to-defect band optical transitions. These findings suggest that widely available light sources such as UV light can be utilized for creating quantum photon sources in TMDs.

6.
ACS Nano ; 16(10): 16776-16783, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36121213

ABSTRACT

Miniaturized near-infrared semiconductor lasers that are able to generate coherent light with low energy consumption have widespread applications in fields such as optical interconnects, neuromorphic computing, and deep-tissue optogenetics. With optical transitions at near-infrared wavelengths, diameter-tunable electronic structures, and superlative optoelectronic properties, semiconducting single-walled carbon nanotubes (SWCNTs) are promising candidates for nanolaser applications. However, despite significant efforts in this direction and recent progress toward enhancing spontaneous emission from SWCNTs through Purcell effects, SWCNT-based excitonic lasers have not yet been demonstrated. Leveraging an optimized cavity-emitter integration scheme enabled by a self-assembly process, here we couple SWCNT emission to the whispering gallery modes supported by polymer microspheres, resulting in room temperature excitonic lasing with an average lasing threshold of 4.5 kW/cm2. The high photostability of SWCNTs allows stable lasing for prolonged duration with minimal degradation. This experimental realization of excitonic lasing from SWCNTs, combined with their versatile electronic and optical properties that can be further controlled by chemical modification, offers far-reaching opportunities for tunable near-infrared nanolasers that are applicable for optical signal processing, in vivo biosensing, and optoelectronic devices.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Temperature , Lasers , Polymers/chemistry
7.
Materials (Basel) ; 15(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35407726

ABSTRACT

In this study, the Df (dissipation factor or loss tangent) and Dk (dielectric constant or permittivity) of the low-loss dielectric material from three different vendors are measured by the Fabry-Perot open resonator (FPOR) technique. Emphasis is placed on the sample preparation, data collection, and the comparison with the data sheet values provided from vendors. A coplanar waveguide with ground (CPWG) test vehicle with one of these raw dielectric materials (vendor 1) is designed (through Polar and simulation) and fabricated. The impedance of the test vehicle is measured by TDR (time-domain reflectometer), and the effective Dk of the test vehicle is calculated by the real cross-section of the metal line width, spacing, and thickness of the test vehicle and a closed-form equation. In parallel, the insertion loss and return loss are measured with the VNA (vector network analyzer) of the test vehicle. Finally, the measurement and simulation results are correlated. Some recommendations on the low-loss dielectric materials of the Dk and Df are also provided.

8.
ACS Appl Mater Interfaces ; 12(36): 40525-40531, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32805799

ABSTRACT

Photocurrent production in quasi-one-dimensional (1D) transition-metal trichalcogenides, TiS3(001) and ZrS3(001), was examined using polarization-dependent scanning photocurrent microscopy. The photocurrent intensity was the strongest when the excitation source was polarized along the 1D chains with dichroic ratios of 4:1 and 1.2:1 for ZrS3 and TiS3, respectively. This behavior is explained by symmetry selection rules applicable to both valence and conduction band states. Symmetry selection rules are seen to be applicable to the experimental band structure, as is observed in polarization-dependent nanospot angle-resolved photoemission spectroscopy. Based on these band symmetry assignments, it is expected that the dichroic ratios for both materials will be maximized using excitation energies within 1 eV of their band gaps, providing versatile polarization sensitive photodetection across the visible spectrum and into the near-infrared.

9.
ACS Nano ; 14(2): 1369-1378, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31877024

ABSTRACT

Although fluorescence and lifetimes of nanoscale emitters can be manipulated by plasmonic materials, it is harder to control polarization due to strict requirements on emitter environments. An ability to engineer 3D nanoarchitectures with nanoscale precision is needed for controlled polarization of nanoscale emitters. Here, we show that prescribed 3D heterocluster architectures with polarized emission can be successfully assembled from nanoscale fluorescent emitters and metallic nanoparticles using DNA-based self-assembly methods. An octahedral DNA origami frame serves as a programmable scaffold for heterogeneous nanoparticle assembly into prescribed clusters. Internal space and external connections of the frames are programmed to coordinate spherical quantum dots (QDs) and gold nanoparticles (AuNPs) into heterocluster architectures through site-specific DNA encodings. We demonstrate and characterize assembly of these architectures using in situ and ex situ structural methods. These cluster nanodevices exhibit polarized light emission with a plasmon-induced dipole along the QD-AuNP nanocluster axis, as observed by single-cluster optical probing. Moreover, emittance properties can be tuned via cluster design. Through a systematic study, we analyzed and established the correlation between cluster architecture, cluster orientation, and polarized emission at a single-emitter level. Excellent correspondence between the optical behavior of these clusters and theoretical predictions was observed. This approach provides the basis for rational creation of single-emitter 3D nanodevices with controllable polarization output using a highly customizable DNA assembly platform.


Subject(s)
DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Quantum Dots/chemistry , DNA/chemical synthesis , Particle Size , Surface Properties
10.
ACS Omega ; 4(5): 9102-9112, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31459998

ABSTRACT

Semiconducting colloidal quantum dots (QDs) provide an excellent platform for nanoscale charge-transfer studies. Because of their size-dependent optoelectronic properties, which can be tuned via chemical synthesis and of their versatility in surface ligand exchange, QDs can be coupled with various types of acceptors to create hybrids with controlled type (electron or hole), direction, and rate of charge flow, depending on the foreseen application, either solar harvesting, light emitting, or biosensing. This perspective highlights several examples of QD-based hybrids with controllable (tunable) rate of charge transfer obtained by various approaches, including by changing the QD core size and shell thickness by colloidal synthesis, by the insertion of molecular linkers or dielectric spacers between donor and acceptor components. We also show that subjecting QDs to external factors such as electric fields and alternate optical excitation energy is another approach to bias the internal charge transfer between charges photogenerated in the QD core and QD's surface charge traps. The perspective also provides the reader with various examples of how single nanoparticle spectroscopic studies can help in understanding and quantifying nanoscale charge transfer with QDs.

11.
ACS Nano ; 13(7): 8461-8468, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31276367

ABSTRACT

We demonstrate layer-dependent electron transfer between core/shell PbS/CdS quantum dots (QDs) and layered MoS2 via energy band gap engineering of both the donor (QDs) and the acceptor (MoS2) components. We do this by (i) changing the size of the QD or (ii) by changing the number of layers of MoS2, and each of these approaches alters the band gap and/or the donor-acceptor separation distance, thus providing a means of tuning the charge-transfer rate. We find the charge-transfer rate to be maximal for QDs of smallest size and for QDs combined with a 5-layer MoS2 or thicker. We model this layer-dependent charge-transfer rate with a theoretical model derived from Marcus theory previously applied to nonadiabatic electron transfer in weakly coupled systems by considering the QD transferring photogenerated electrons to noninteracting monolayers within a few layers of MoS2.

12.
Chem Commun (Camb) ; 54(5): 495-498, 2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29261198

ABSTRACT

The kinetics of photoluminescence blinking for isolated PbS/CdS nanocrystals changes with the photon excitation energy, with PL blinking increasing in frequency and changing from a two-state to a multistate on/off switching when the excitation energy changes from 1Sh-1Se (≈1.4 eV) to 1Ph-1Pe (≈2.4 eV). This increase in PL blinking activity with increased photon excitation energy is reasoned in terms of the formation of hot excitons leading to emission from both the band edge state and defect states, with defect states connected to traps that are otherwise inaccessible following low photon energy excitation at the band edge.

13.
ACS Nano ; 10(4): 4790-6, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27031885

ABSTRACT

The combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D-2D hybrids with enhanced light absorption properties. These 0D-2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D-2D hybrids increases with added number of SnS2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.

14.
Opt Express ; 19(9): 8187-99, 2011 Apr 25.
Article in English | MEDLINE | ID: mdl-21643069

ABSTRACT

This study employed the optical responses of periodic structures, multiple-variable functions with sufficient complexity, to develop a cryptographic scheme. The characteristics of structures could be delivered easily with the ciphertext, a series of numbers containing plaintext messages. Two optimization methods utilizing a genetic algorithm were adopted to generate the periodic structure profile as a critical encryption/decryption key. The robustness of methods was further confirmed under various limits. The ciphertext could only be decrypted by referring to the codebook after acquiring the pre-determined optical response. The confidentiality and large capacity of the scheme revealed the enhanced coding strategies here while the success of the scheme was demonstrated with the delivery of an example message.


Subject(s)
Algorithms , Computer Security , Data Compression/methods , Optical Devices , Signal Processing, Computer-Assisted
15.
Appl Opt ; 49(11): 2041-6, 2010 Apr 10.
Article in English | MEDLINE | ID: mdl-20390002

ABSTRACT

A cryptosystem for plaintext messages was developed with gratings and their spectral and directional optical properties. Although there were many applicable grating types and optical responses, this manuscript took an example of a binary metallic surface relief and its specular reflectance at three wavelengths to demonstrate the working principles and the capabilities of the cryptosystem. For one, a series of numbers and the grating characteristics served as the ciphertext containing plaintext messages and the information of the sender's signature. Confidential, high-density, and authentic messages could be, therefore, delivered with tiny or even virtual gratings. Second, four unique encryption/decryption keys here significantly reduced the risk of the ciphertext being easily recovered by eavesdroppers. Further manipulation of keys not only offered several strategies of enhancing the system's safety, but also allowed the coexistence of many two-party, or even multiple-entity, communications. The reflectance spectra shown here were mainly attributed to the Wood's anomaly and were numerically obtained from programs based on rigorous coupled-wave analysis.

16.
Opt Express ; 17(12): 9789-803, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19506628

ABSTRACT

This work numerically investigates optical responses (absorptance, reflectance, and transmittance) of deep slits with five nanoscale slit profile variations at the transverse magnetic wave incidence by employing the rigorous coupled-wave analysis. For slits with attached features, their optical responses can be much different due to the modified cavity geometry and dangled structures, even at wavelengths between 3 and 15 microm. The shifts of cavity resonance excitation result in higher transmittance through narrower slits at specific wavelengths and resonance modes are confirmed with the electromagnetic fields. Opposite roles possibly played by features in increasing or decreasing absorptance are determined by the feature position and demonstrated by Poynting vectors. Correlations among all responses of a representative slit array, the angle of incidence, and the slit density are also comprehensively studied. When multiple slit types coexist in an array (complex slits), a wide-band transmittance or absorptance enhancement is feasible by merging spectral peaks contributed from each type of slits distinctively. Discrepancy among infrared optical responses of four selected slit combinations is explained while effects of slit density are also discussed.


Subject(s)
Metals/chemistry , Models, Theoretical , Refractometry/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Infrared Rays , Light , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...